Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 74

1.

Structure-oriented bioinformatic approach exploring histidine-rich clusters in proteins.

Cun S, Lai YT, Chang YY, Sun H.

Metallomics. 2013 Jun;5(7):904-12. doi: 10.1039/c3mt00026e.

PMID:
23771053
2.

Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals.

Amrein B, Schmid M, Collet G, Cuniasse P, Gilardoni F, Seebeck FP, Ward TR.

Metallomics. 2012 Apr;4(4):379-88. doi: 10.1039/c2mt20010d. Epub 2012 Mar 5.

PMID:
22392271
3.

Characterizing protein folding transition States using Psi-analysis.

Pandit AD, Krantz BA, Dothager RS, Sosnick TR.

Methods Mol Biol. 2007;350:83-104.

PMID:
16957319
4.

Metal-binding properties of an Hpn-like histidine-rich protein.

Zeng YB, Yang N, Sun H.

Chemistry. 2011 May 16;17(21):5852-60. doi: 10.1002/chem.201100279. Epub 2011 Apr 21.

PMID:
21520306
5.

The X-ray structure of the zinc transporter ZnuA from Salmonella enterica discloses a unique triad of zinc-coordinating histidines.

Ilari A, Alaleona F, Petrarca P, Battistoni A, Chiancone E.

J Mol Biol. 2011 Jun 17;409(4):630-41. doi: 10.1016/j.jmb.2011.04.036. Epub 2011 Apr 21.

PMID:
21530543
6.

Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks.

Passerini A, Punta M, Ceroni A, Rost B, Frasconi P.

Proteins. 2006 Nov 1;65(2):305-16.

PMID:
16927295
7.
8.

A histidine-rich metal binding domain at the N terminus of Cu,Zn-superoxide dismutases from pathogenic bacteria: a novel strategy for metal chaperoning.

Battistoni A, Pacello F, Mazzetti AP, Capo C, Kroll JS, Langford PR, Sansone A, Donnarumma G, Valenti P, Rotilio G.

J Biol Chem. 2001 Aug 10;276(32):30315-25. Epub 2001 May 21.

9.

Structure-based analysis of the metal-dependent mechanism of H-N-H endonucleases.

Maté MJ, Kleanthous C.

J Biol Chem. 2004 Aug 13;279(33):34763-9. Epub 2004 Jun 8.

10.
11.

Caenorhabditis elegans metallothionein isoform specificity--metal binding abilities and the role of histidine in CeMT1 and CeMT2.

Bofill R, Orihuela R, Romagosa M, Domènech J, Atrian S, Capdevila M.

FEBS J. 2009 Dec;276(23):7040-56. doi: 10.1111/j.1742-4658.2009.07417.x. Epub 2009 Oct 27.

12.

Identifying the minimal copper- and zinc-binding site sequence in amyloid-beta peptides.

Minicozzi V, Stellato F, Comai M, Dalla Serra M, Potrich C, Meyer-Klaucke W, Morante S.

J Biol Chem. 2008 Apr 18;283(16):10784-92. doi: 10.1074/jbc.M707109200. Epub 2008 Jan 30.

13.

Metallothioneins with unusual residues: histidines as modulators of zinc affinity and reactivity.

Blindauer CA.

J Inorg Biochem. 2008 Mar;102(3):507-21. doi: 10.1016/j.jinorgbio.2007.10.032. Epub 2007 Nov 28.

PMID:
18171588
14.
15.

Surface recognition of a protein using designed transition metal complexes.

Fazal MA, Roy BC, Sun S, Mallik S, Rodgers KR.

J Am Chem Soc. 2001 Jul 4;123(26):6283-90.

PMID:
11427052
16.

Metal protein interactions.

Sarkar B.

Prog Food Nutr Sci. 1987;11(3-4):363-400. Review.

PMID:
3328221
17.

The extended environment of mononuclear metal centers in protein structures.

Karlin S, Zhu ZY, Karlin KD.

Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14225-30.

18.

Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

Dokmanić I, Sikić M, Tomić S.

Acta Crystallogr D Biol Crystallogr. 2008 Mar;64(Pt 3):257-63. doi: 10.1107/S090744490706595X. Epub 2008 Feb 20.

PMID:
18323620
19.

Extracellular histidine residues identify common structural determinants in the copper/zinc P2X2 receptor modulation.

Lorca RA, Coddou C, Gazitúa MC, Bull P, Arredondo C, Huidobro-Toro JP.

J Neurochem. 2005 Oct;95(2):499-512.

Supplemental Content

Support Center