Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Implication of diffusion and significance of anodic pH in nitrogen-recovering microbial electrochemical cells.

Haddadi S, Elbeshbishy E, Lee HS.

Bioresour Technol. 2013 Aug;142:562-9. doi: 10.1016/j.biortech.2013.05.075. Epub 2013 May 27.

PMID:
23770996
2.

Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model.

Marcus AK, Torres CI, Rittmann BE.

Bioresour Technol. 2011 Jan;102(1):253-62. doi: 10.1016/j.biortech.2010.03.100. Epub 2010 Apr 14.

PMID:
20395137
3.

Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor.

Wu X, Modin O.

Bioresour Technol. 2013 Oct;146:530-6. doi: 10.1016/j.biortech.2013.07.130. Epub 2013 Aug 2.

PMID:
23973971
4.

Ammonium recovery and energy production from urine by a microbial fuel cell.

Kuntke P, Smiech KM, Bruning H, Zeeman G, Saakes M, Sleutels TH, Hamelers HV, Buisman CJ.

Water Res. 2012 May 15;46(8):2627-36. doi: 10.1016/j.watres.2012.02.025. Epub 2012 Feb 21.

PMID:
22406284
5.

Removal of organic matter and nitrogen in swine wastewater using an integrated ion exchange and bioelectrochemical system.

Lim SJ, Kim TH.

Bioresour Technol. 2015;189:107-12. doi: 10.1016/j.biortech.2015.03.151. Epub 2015 Apr 7.

PMID:
25876230
6.

Nitrogen removal from wastewater through microbial electrolysis cells and cation exchange membrane.

Haddadi S, Nabi-Bidhendi G, Mehrdadi N.

J Environ Health Sci Eng. 2014 Feb 17;12(1):48. doi: 10.1186/2052-336X-12-48.

7.

Effects of ammonium concentration and charge exchange on ammonium recovery from high strength wastewater using a microbial fuel cell.

Kuntke P, Geleji M, Bruning H, Zeeman G, Hamelers HV, Buisman CJ.

Bioresour Technol. 2011 Mar;102(6):4376-82. doi: 10.1016/j.biortech.2010.12.085. Epub 2010 Dec 30.

PMID:
21277769
8.

Electrochemical techniques reveal that total ammonium stress increases electron flow to anode respiration in mixed-species bacterial anode biofilms.

Mahmoud M, Parameswaran P, Torres CI, Rittmann BE.

Biotechnol Bioeng. 2017 Jun;114(6):1151-1159. doi: 10.1002/bit.26246. Epub 2017 Feb 8.

PMID:
28067404
9.

Reduction of pH buffer requirement in bioelectrochemical systems.

Sleutels TH, Hamelers HV, Buisman CJ.

Environ Sci Technol. 2010 Nov 1;44(21):8259-63. doi: 10.1021/es101858f.

PMID:
20942476
10.

The type of ion selective membrane determines stability and production levels of microbial electrosynthesis.

Gildemyn S, Verbeeck K, Jansen R, Rabaey K.

Bioresour Technol. 2017 Jan;224:358-364. doi: 10.1016/j.biortech.2016.11.088. Epub 2016 Nov 23.

PMID:
27923608
11.

Ammonia recycling enables sustainable operation of bioelectrochemical systems.

Cheng KY, Kaksonen AH, Cord-Ruwisch R.

Bioresour Technol. 2013 Sep;143:25-31. doi: 10.1016/j.biortech.2013.05.108. Epub 2013 May 31.

PMID:
23774293
12.

Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells.

Kim JR, Cheng S, Oh SE, Logan BE.

Environ Sci Technol. 2007 Feb 1;41(3):1004-9.

PMID:
17328216
13.

Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells.

Yuan Y, Zhao B, Zhou S, Zhong S, Zhuang L.

Bioresour Technol. 2011 Jul;102(13):6887-91. doi: 10.1016/j.biortech.2011.04.008. Epub 2011 Apr 9.

PMID:
21530241
14.

Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria.

Torres CI, Kato Marcus A, Rittmann BE.

Biotechnol Bioeng. 2008 Aug 1;100(5):872-81. doi: 10.1002/bit.21821.

PMID:
18551519
15.

Microbial fuel cell performance with a pressurized cathode chamber.

Fornero JJ, Rosenbaum M, Cotta MA, Angenent LT.

Environ Sci Technol. 2008 Nov 15;42(22):8578-84.

PMID:
19068851
16.

pH- and concentration-programmable electrodialytic buffer generator.

Chen Y, Edwards BL, Dasgupta PK, Srinivasan K.

Anal Chem. 2012 Jan 3;84(1):59-66. doi: 10.1021/ac2023734. Epub 2011 Dec 12.

PMID:
22148285
17.

Improved performance of single-chamber microbial fuel cells through control of membrane deformation.

Zhang X, Cheng S, Huang X, Logan BE.

Biosens Bioelectron. 2010 Mar 15;25(7):1825-8. doi: 10.1016/j.bios.2009.11.018. Epub 2009 Nov 27.

PMID:
20022480
18.

Biodegradation and proton exchange using natural rubber in microbial fuel cells.

Winfield J, Ieropoulos I, Rossiter J, Greenman J, Patton D.

Biodegradation. 2013 Nov;24(6):733-9. doi: 10.1007/s10532-013-9621-x. Epub 2013 Jan 30.

PMID:
23361125
19.

On the importance of identifying, characterizing, and predicting fundamental phenomena towards microbial electrochemistry applications.

Torres CI.

Curr Opin Biotechnol. 2014 Jun;27:107-14. doi: 10.1016/j.copbio.2013.12.008. Epub 2014 Jan 14. Review.

PMID:
24441074
20.

Challenges and constraints of using oxygen cathodes in microbial fuel cells.

Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I.

Environ Sci Technol. 2006 Sep 1;40(17):5193-9.

PMID:
16999088

Supplemental Content

Support Center