Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 200

1.

Conformational switching of the 26S proteasome enables substrate degradation.

Matyskiela ME, Lander GC, Martin A.

Nat Struct Mol Biol. 2013 Jul;20(7):781-8. doi: 10.1038/nsmb.2616. Epub 2013 Jun 16.

2.

Structure of an endogenous yeast 26S proteasome reveals two major conformational states.

Luan B, Huang X, Wu J, Mei Z, Wang Y, Xue X, Yan C, Wang J, Finley DJ, Shi Y, Wang F.

Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2642-7. doi: 10.1073/pnas.1601561113. Epub 2016 Feb 29.

3.

Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation.

Śledź P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Förster F, Baumeister W.

Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7264-9. doi: 10.1073/pnas.1305782110. Epub 2013 Apr 15.

4.

Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome.

Bashore C, Dambacher CM, Goodall EA, Matyskiela ME, Lander GC, Martin A.

Nat Struct Mol Biol. 2015 Sep;22(9):712-9. doi: 10.1038/nsmb.3075. Epub 2015 Aug 24.

5.

Structural characterization of the interaction of Ubp6 with the 26S proteasome.

Aufderheide A, Beck F, Stengel F, Hartwig M, Schweitzer A, Pfeifer G, Goldberg AL, Sakata E, Baumeister W, Förster F.

Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8626-31. doi: 10.1073/pnas.1510449112. Epub 2015 Jun 30.

6.

Complete subunit architecture of the proteasome regulatory particle.

Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A.

Nature. 2012 Jan 11;482(7384):186-91. doi: 10.1038/nature10774.

7.

Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition.

Dambacher CM, Worden EJ, Herzik MA, Martin A, Lander GC.

Elife. 2016 Jan 8;5:e13027. doi: 10.7554/eLife.13027.

8.

Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11.

Pathare GR, Nagy I, Śledź P, Anderson DJ, Zhou HJ, Pardon E, Steyaert J, Förster F, Bracher A, Baumeister W.

Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2984-9. doi: 10.1073/pnas.1400546111. Epub 2014 Feb 10.

9.

Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation.

Worden EJ, Padovani C, Martin A.

Nat Struct Mol Biol. 2014 Mar;21(3):220-7. doi: 10.1038/nsmb.2771. Epub 2014 Jan 23.

PMID:
24463465
10.

ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle.

Babbitt SE, Kiss A, Deffenbaugh AE, Chang YH, Bailly E, Erdjument-Bromage H, Tempst P, Buranda T, Sklar LA, Baumler J, Gogol E, Skowyra D.

Cell. 2005 May 20;121(4):553-65.

11.

Near-atomic resolution structural model of the yeast 26S proteasome.

Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko JM, Villa E, Baumeister W, Förster F.

Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14870-5. doi: 10.1073/pnas.1213333109. Epub 2012 Aug 27.

12.

Proteasome assembly influences interaction with ubiquitinated proteins and shuttle factors.

Chandra A, Chen L, Liang H, Madura K.

J Biol Chem. 2010 Mar 12;285(11):8330-9. doi: 10.1074/jbc.M109.076786. Epub 2010 Jan 8.

13.

The ATP costs and time required to degrade ubiquitinated proteins by the 26 S proteasome.

Peth A, Nathan JA, Goldberg AL.

J Biol Chem. 2013 Oct 4;288(40):29215-22. doi: 10.1074/jbc.M113.482570. Epub 2013 Aug 21.

14.

A cryptic protease couples deubiquitination and degradation by the proteasome.

Yao T, Cohen RE.

Nature. 2002 Sep 26;419(6905):403-7. Epub 2002 Sep 1.

PMID:
12353037
15.

Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase.

Beckwith R, Estrin E, Worden EJ, Martin A.

Nat Struct Mol Biol. 2013 Oct;20(10):1164-72. doi: 10.1038/nsmb.2659. Epub 2013 Sep 8.

16.

Dependence of proteasome processing rate on substrate unfolding.

Henderson A, Erales J, Hoyt MA, Coffino P.

J Biol Chem. 2011 May 20;286(20):17495-502. doi: 10.1074/jbc.M110.212027. Epub 2011 Mar 28.

17.

The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome.

De La Mota-Peynado A, Lee SY, Pierce BM, Wani P, Singh CR, Roelofs J.

J Biol Chem. 2013 Oct 11;288(41):29467-81. doi: 10.1074/jbc.M113.491662. Epub 2013 Aug 30.

18.

ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation.

Peth A, Uchiki T, Goldberg AL.

Mol Cell. 2010 Nov 24;40(4):671-81. doi: 10.1016/j.molcel.2010.11.002.

19.

Emerging mechanistic insights into AAA complexes regulating proteasomal degradation.

Förster F, Schuller JM, Unverdorben P, Aufderheide A.

Biomolecules. 2014 Aug 6;4(3):774-94. doi: 10.3390/biom4030774. Review.

20.

Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome.

Rosenzweig R, Bronner V, Zhang D, Fushman D, Glickman MH.

J Biol Chem. 2012 Apr 27;287(18):14659-71. doi: 10.1074/jbc.M111.316323. Epub 2012 Feb 8.

Supplemental Content

Support Center