Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 141

1.

Thinning of large-area graphene film from multilayer to bilayer with a low-power CO2 laser.

Lin Z, Huang T, Ye X, Zhong M, Li L, Jiang J, Zhang W, Fan L, Zhu H.

Nanotechnology. 2013 Jul 12;24(27):275302. doi: 10.1088/0957-4484/24/27/275302. Epub 2013 Jun 14.

PMID:
23764487
2.

Laser thinning for monolayer graphene formation: heat sink and interference effect.

Han GH, Chae SJ, Kim ES, Güneş F, Lee IH, Lee SW, Lee SY, Lim SC, Jeong HK, Jeong MS, Lee YH.

ACS Nano. 2011 Jan 25;5(1):263-8. doi: 10.1021/nn1026438. Epub 2010 Dec 21.

PMID:
21174409
3.

Thermal stability of multilayer graphene films synthesized by chemical vapor deposition and stained by metallic impurities.

Kahng YH, Lee S, Park W, Jo G, Choe M, Lee JH, Yu H, Lee T, Lee K.

Nanotechnology. 2012 Feb 24;23(7):075702. doi: 10.1088/0957-4484/23/7/075702. Epub 2012 Jan 20.

PMID:
22261350
4.

Large-Scale Synthesis of a Uniform Film of Bilayer MoS2 on Graphene for 2D Heterostructure Phototransistors.

Chen C, Feng Z, Feng Y, Yue Y, Qin C, Zhang D, Feng W.

ACS Appl Mater Interfaces. 2016 Jul 27;8(29):19004-11. doi: 10.1021/acsami.6b00751. Epub 2016 Jul 12.

PMID:
27381011
5.

CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films.

Ramón ME, Gupta A, Corbet C, Ferrer DA, Movva HC, Carpenter G, Colombo L, Bourianoff G, Doczy M, Akinwande D, Tutuc E, Banerjee SK.

ACS Nano. 2011 Sep 27;5(9):7198-204. doi: 10.1021/nn202012m. Epub 2011 Aug 5.

PMID:
21800895
6.

Thinning segregated graphene layers on high carbon solubility substrates of rhodium foils by tuning the quenching process.

Liu M, Zhang Y, Chen Y, Gao Y, Gao T, Ma D, Ji Q, Zhang Y, Li C, Liu Z.

ACS Nano. 2012 Dec 21;6(12):10581-9. doi: 10.1021/nn3047154. Epub 2012 Nov 21.

PMID:
23157621
7.

Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes.

Wu W, Yu Q, Peng P, Liu Z, Bao J, Pei SS.

Nanotechnology. 2012 Jan 27;23(3):035603. doi: 10.1088/0957-4484/23/3/035603. Epub 2011 Dec 16.

PMID:
22173552
8.

In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene.

Li DW, Zhou YS, Huang X, Jiang L, Silvain JF, Lu YF.

Nanoscale. 2015 Feb 28;7(8):3651-9. doi: 10.1039/c4nr07078j.

PMID:
25641163
9.

Layer-by-layer thinning of graphene by plasma irradiation and post-annealing.

Yang X, Tang S, Ding G, Xie X, Jiang M, Huang F.

Nanotechnology. 2012 Jan 20;23(2):025704. doi: 10.1088/0957-4484/23/2/025704.

PMID:
22166725
10.

Highly Conductive and Transparent Large-Area Bilayer Graphene Realized by MoCl5 Intercalation.

Kinoshita H, Jeon I, Maruyama M, Kawahara K, Terao Y, Ding D, Matsumoto R, Matsuo Y, Okada S, Ago H.

Adv Mater. 2017 Nov;29(41). doi: 10.1002/adma.201702141. Epub 2017 Sep 18.

PMID:
28922479
11.

Wafer scale homogeneous bilayer graphene films by chemical vapor deposition.

Lee S, Lee K, Zhong Z.

Nano Lett. 2010 Nov 10;10(11):4702-7. doi: 10.1021/nl1029978. Epub 2010 Oct 8.

PMID:
20932046
12.

Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition.

Garlow JA, Barrett LK, Wu L, Kisslinger K, Zhu Y, Pulecio JF.

Sci Rep. 2016 Jan 29;6:19804. doi: 10.1038/srep19804.

13.

Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition.

Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J.

Nano Lett. 2009 Jan;9(1):30-5. doi: 10.1021/nl801827v.

PMID:
19046078
14.

Large-area synthesis of high-quality and uniform graphene films on copper foils.

Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS.

Science. 2009 Jun 5;324(5932):1312-4. doi: 10.1126/science.1171245. Epub 2009 May 7.

15.

A review of large-area bilayer graphene synthesis by chemical vapor deposition.

Fang W, Hsu AL, Song Y, Kong J.

Nanoscale. 2015 Dec 28;7(48):20335-51. doi: 10.1039/c5nr04756k.

PMID:
26604157
16.

Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition.

Wu Q, Jung SJ, Jang SK, Lee J, Jeon I, Suh H, Kim YH, Lee YH, Lee S, Song YJ.

Nanoscale. 2015 Jun 21;7(23):10357-61. doi: 10.1039/c5nr02716k. Erratum in: Nanoscale. 2015 Jul 28;7(28):12225.

PMID:
26006180
17.

Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.

Sarker AK, Hong JD.

Langmuir. 2012 Aug 28;28(34):12637-46. doi: 10.1021/la3021589. Epub 2012 Aug 16.

PMID:
22866750
18.

Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils.

Chen S, Cai W, Piner RD, Suk JW, Wu Y, Ren Y, Kang J, Ruoff RS.

Nano Lett. 2011 Sep 14;11(9):3519-25. doi: 10.1021/nl201699j. Epub 2011 Aug 3.

PMID:
21793495
19.

Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns.

Zhang C, Zhang J, Lin K, Huang Y.

Rev Sci Instrum. 2017 May;88(5):053907. doi: 10.1063/1.4984004.

PMID:
28571393
20.

Multilayered graphene in K(a)-band: nanoscale coating for aerospace applications.

Kuzhir P, Volynets N, Maksimenko S, Kaplas T, Svirko Y.

J Nanosci Nanotechnol. 2013 Aug;13(8):5864-7.

PMID:
23882850

Supplemental Content

Support Center