Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 117

1.

EEG signatures associated with stopping are sensitive to preparation.

Greenhouse I, Wessel JR.

Psychophysiology. 2013 Sep;50(9):900-8. doi: 10.1111/psyp.12070. Epub 2013 Jun 14.

2.

Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task.

Schevernels H, Bombeke K, Van der Borght L, Hopf JM, Krebs RM, Boehler CN.

Neuroimage. 2015 Nov 1;121:115-25. doi: 10.1016/j.neuroimage.2015.07.023. Epub 2015 Jul 15.

PMID:
26188262
3.

Differential modulation of the N2 and P3 event-related potentials by response conflict and inhibition.

Groom MJ, Cragg L.

Brain Cogn. 2015 Jul;97:1-9. doi: 10.1016/j.bandc.2015.04.004. Epub 2015 May 4.

PMID:
25955278
4.

Response inhibition of children with ADHD in the stop-signal task: an event-related potential study.

Senderecka M, Grabowska A, Szewczyk J, Gerc K, Chmylak R.

Int J Psychophysiol. 2012 Jul;85(1):93-105. doi: 10.1016/j.ijpsycho.2011.05.007. Epub 2011 Jun 12.

PMID:
21641941
5.

Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.

Sebastian A, Rössler K, Wibral M, Mobascher A, Lieb K, Jung P, Tüscher O.

J Neurosci. 2017 Oct 4;37(40):9785-9794. doi: 10.1523/JNEUROSCI.1476-17.2017. Epub 2017 Sep 8.

PMID:
28887387
6.

Preparing for (valenced) action: The role of differential effort in the orthogonalized go/no-go task.

Schevernels H, Bombeke K, Krebs RM, Boehler CN.

Psychophysiology. 2016 Feb;53(2):186-97. doi: 10.1111/psyp.12558. Epub 2015 Oct 20.

PMID:
26481327
7.

The auditory-evoked N2 and P3 components in the stop-signal task: indices of inhibition, response-conflict or error-detection?

Dimoska A, Johnstone SJ, Barry RJ.

Brain Cogn. 2006 Nov;62(2):98-112. Epub 2006 Jun 30.

PMID:
16814442
8.

Voluntarily-generated unimanual preparation is associated with stopping success: evidence from LRP and lateralized mu ERD before the stop signal.

Ko YT, Cheng SK, Juan CH.

Psychol Res. 2015 Mar;79(2):249-58. doi: 10.1007/s00426-014-0567-3. Epub 2014 Apr 10.

PMID:
24718558
9.

ERP components associated with successful and unsuccessful stopping in a stop-signal task.

Kok A, Ramautar JR, De Ruiter MB, Band GP, Ridderinkhof KR.

Psychophysiology. 2004 Jan;41(1):9-20.

PMID:
14692996
10.

The effects of fetal alcohol syndrome on response execution and inhibition: an event-related potential study.

Burden MJ, Andrew C, Saint-Amour D, Meintjes EM, Molteno CD, Hoyme HE, Robinson LK, Khaole N, Nelson CA, Jacobson JL, Jacobson SW.

Alcohol Clin Exp Res. 2009 Nov;33(11):1994-2004. doi: 10.1111/j.1530-0277.2009.01038.x. Epub 2009 Aug 31.

PMID:
19719791
11.

Effects of stop-signal probability in the stop-signal paradigm: the N2/P3 complex further validated.

Ramautar JR, Kok A, Ridderinkhof KR.

Brain Cogn. 2004 Nov;56(2):234-52.

PMID:
15518938
12.

It's not too late: the onset of the frontocentral P3 indexes successful response inhibition in the stop-signal paradigm.

Wessel JR, Aron AR.

Psychophysiology. 2015 Apr;52(4):472-80. doi: 10.1111/psyp.12374. Epub 2014 Oct 28.

13.

The role of trait impulsivity in response inhibition: event-related potentials in a stop-signal task.

Shen IH, Lee DS, Chen CL.

Int J Psychophysiol. 2014 Feb;91(2):80-7. doi: 10.1016/j.ijpsycho.2013.11.004. Epub 2013 Dec 4.

PMID:
24316151
14.

Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: electrophysiological responses and functional and structural connectivity.

Swann NC, Cai W, Conner CR, Pieters TA, Claffey MP, George JS, Aron AR, Tandon N.

Neuroimage. 2012 Feb 1;59(3):2860-70. doi: 10.1016/j.neuroimage.2011.09.049. Epub 2011 Sep 29.

15.

Effects of task complexity on ERP components in Go/Nogo tasks.

Gajewski PD, Falkenstein M.

Int J Psychophysiol. 2013 Mar;87(3):273-8. doi: 10.1016/j.ijpsycho.2012.08.007. Epub 2012 Aug 17.

PMID:
22906814
16.

When the brain simulates stopping: Neural activity recorded during real and imagined stop-signal tasks.

González-Villar AJ, Bonilla FM, Carrillo-de-la-Peña MT.

Cogn Affect Behav Neurosci. 2016 Oct;16(5):825-35. doi: 10.3758/s13415-016-0434-3.

PMID:
27160368
17.

Effects of stop-signal modality on the N2/P3 complex elicited in the stop-signal paradigm.

Ramautar JR, Kok A, Ridderinkhof KR.

Biol Psychol. 2006 Apr;72(1):96-109. Epub 2005 Sep 12.

PMID:
16157441
18.

Neurophysiological marker of inhibition distinguishes language groups on a non-linguistic executive function test.

Fernandez M, Tartar JL, Padron D, Acosta J.

Brain Cogn. 2013 Dec;83(3):330-6. doi: 10.1016/j.bandc.2013.09.010. Epub 2013 Oct 18.

PMID:
24141240
19.
20.

Inhibitory motor control based on complex stopping goals relies on the same brain network as simple stopping.

Wessel JR, Aron AR.

Neuroimage. 2014 Dec;103:225-34. doi: 10.1016/j.neuroimage.2014.09.048. Epub 2014 Sep 28.

Supplemental Content

Support Center