Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 131

1.

Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae.

Ayer A, Sanwald J, Pillay BA, Meyer AJ, Perrone GG, Dawes IW.

PLoS One. 2013 Jun 7;8(6):e65240. doi: 10.1371/journal.pone.0065240. Print 2013.

2.

A genome-wide screen in yeast identifies specific oxidative stress genes required for the maintenance of sub-cellular redox homeostasis.

Ayer A, Fellermeier S, Fife C, Li SS, Smits G, Meyer AJ, Dawes IW, Perrone GG.

PLoS One. 2012;7(9):e44278. doi: 10.1371/journal.pone.0044278. Epub 2012 Sep 6.

3.

Redox-sensitive YFP sensors monitor dynamic nuclear and cytosolic glutathione redox changes.

Dardalhon M, Kumar C, Iraqui I, Vernis L, Kienda G, Banach-Latapy A, He T, Chanet R, Faye G, Outten CE, Huang ME.

Free Radic Biol Med. 2012 Jun 1-15;52(11-12):2254-65. doi: 10.1016/j.freeradbiomed.2012.04.004. Epub 2012 Apr 17.

4.

Inhibition of glutathione synthesis distinctly alters mitochondrial and cytosolic redox poise.

Kolossov VL, Hanafin WP, Beaudoin JN, Bica DE, DiLiberto SJ, Kenis PJ, Gaskins HR.

Exp Biol Med (Maywood). 2014 Apr;239(4):394-403. doi: 10.1177/1535370214522179. Epub 2014 Feb 28.

5.

In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth.

Orij R, Postmus J, Ter Beek A, Brul S, Smits GJ.

Microbiology. 2009 Jan;155(Pt 1):268-78. doi: 10.1099/mic.0.022038-0.

PMID:
19118367
6.

Modulation of the specific glutathionylation of mitochondrial proteins in the yeast Saccharomyces cerevisiae under basal and stress conditions.

Gergondey R, Garcia C, Marchand CH, Lemaire SD, Camadro JM, Auchère F.

Biochem J. 2017 Mar 15;474(7):1175-1193. doi: 10.1042/BCJ20160927.

PMID:
28167699
7.

The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix.

Hu J, Dong L, Outten CE.

J Biol Chem. 2008 Oct 24;283(43):29126-34. doi: 10.1074/jbc.M803028200. Epub 2008 Aug 15.

8.

Glutathione redox state regulates mitochondrial reactive oxygen production.

Shen D, Dalton TP, Nebert DW, Shertzer HG.

J Biol Chem. 2005 Jul 8;280(27):25305-12. Epub 2005 May 9.

9.

Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes.

Lismont C, Walton PA, Fransen M.

Methods Mol Biol. 2017;1595:151-164. doi: 10.1007/978-1-4939-6937-1_14.

PMID:
28409459
10.

Glutathione reductase from Brassica rapa affects tolerance and the redox state but not fermentation ability in response to oxidative stress in genetically modified Saccharomyces cerevisiae.

Yoon HS, Shin SY, Kim YS, Kim IS.

World J Microbiol Biotechnol. 2012 May;28(5):1901-15. doi: 10.1007/s11274-011-0988-8. Epub 2012 Feb 7.

PMID:
22806013
11.

Redox-sensitive YFP sensors for monitoring dynamic compartment-specific glutathione redox state.

Banach-Latapy A, He T, Dardalhon M, Vernis L, Chanet R, Huang ME.

Free Radic Biol Med. 2013 Dec;65:436-45. doi: 10.1016/j.freeradbiomed.2013.07.033. Epub 2013 Jul 25.

PMID:
23891676
12.

Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge.

Schwarzländer M, Fricker MD, Sweetlove LJ.

Biochim Biophys Acta. 2009 May;1787(5):468-75. doi: 10.1016/j.bbabio.2009.01.020. Epub 2009 Feb 3.

13.

Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity.

Zhang H, Limphong P, Pieper J, Liu Q, Rodesch CK, Christians E, Benjamin IJ.

FASEB J. 2012 Apr;26(4):1442-51. doi: 10.1096/fj.11-199869. Epub 2011 Dec 27.

14.

Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer.

Meyer AJ, Brach T, Marty L, Kreye S, Rouhier N, Jacquot JP, Hell R.

Plant J. 2007 Dec;52(5):973-86. Epub 2007 Sep 22.

15.

Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity.

Hashemy SI, Johansson C, Berndt C, Lillig CH, Holmgren A.

J Biol Chem. 2007 May 11;282(19):14428-36. Epub 2007 Mar 13.

16.

Dynamic compartmentalization of base excision repair proteins in response to nuclear and mitochondrial oxidative stress.

Griffiths LM, Swartzlander D, Meadows KL, Wilkinson KD, Corbett AH, Doetsch PW.

Mol Cell Biol. 2009 Feb;29(3):794-807. doi: 10.1128/MCB.01357-08. Epub 2008 Nov 24.

17.

Glutathione redox potential in the mitochondrial intermembrane space is linked to the cytosol and impacts the Mia40 redox state.

Kojer K, Bien M, Gangel H, Morgan B, Dick TP, Riemer J.

EMBO J. 2012 Jun 15;31(14):3169-82. doi: 10.1038/emboj.2012.165.

19.
20.

A fluorometer-based method for monitoring oxidation of redox-sensitive GFP (roGFP) during development and extended dark stress.

Rosenwasser S, Rot I, Meyer AJ, Feldman L, Jiang K, Friedman H.

Physiol Plant. 2010 Apr;138(4):493-502. doi: 10.1111/j.1399-3054.2009.01334.x. Epub 2009 Nov 23.

PMID:
20051029

Supplemental Content

Support Center