Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 141

1.

Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments.

Klatt CG, Inskeep WP, Herrgard MJ, Jay ZJ, Rusch DB, Tringe SG, Niki Parenteau M, Ward DM, Boomer SM, Bryant DA, Miller SR.

Front Microbiol. 2013 Jun 3;4:106. doi: 10.3389/fmicb.2013.00106.

2.

Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function.

Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, Jennings Rd, Fouke BW, Reysenbach AL, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M.

PLoS One. 2010 Mar 19;5(3):e9773. doi: 10.1371/journal.pone.0009773.

3.

The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem.

Inskeep WP, Jay ZJ, Tringe SG, Herrgård MJ, Rusch DB; YNP Metagenome Project Steering Committee and Working Group Members..

Front Microbiol. 2013 May 6;4:67. doi: 10.3389/fmicb.2013.00067.

4.

Phylogenetic and Functional Analysis of Metagenome Sequence from High-Temperature Archaeal Habitats Demonstrate Linkages between Metabolic Potential and Geochemistry.

Inskeep WP, Jay ZJ, Herrgard MJ, Kozubal MA, Rusch DB, Tringe SG, Macur RE, Jennings Rd, Boyd ES, Spear JR, Roberto FF.

Front Microbiol. 2013 May 15;4:95. doi: 10.3389/fmicb.2013.00095.

6.

Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential.

Klatt CG, Wood JM, Rusch DB, Bateson MM, Hamamura N, Heidelberg JF, Grossman AR, Bhaya D, Cohan FM, Kühl M, Bryant DA, Ward DM.

ISME J. 2011 Aug;5(8):1262-78. doi: 10.1038/ismej.2011.73.

7.

Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring.

Klatt CG, Liu Z, Ludwig M, Kühl M, Jensen SI, Bryant DA, Ward DM.

ISME J. 2013 Sep;7(9):1775-89. doi: 10.1038/ismej.2013.52.

8.

Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments.

Hamamura N, Macur RE, Korf S, Ackerman G, Taylor WP, Kozubal M, Reysenbach AL, Inskeep WP.

Environ Microbiol. 2009 Feb;11(2):421-31. doi: 10.1111/j.1462-2920.2008.01781.x.

PMID:
19196273
9.

Predominant Acidilobus-like populations from geothermal environments in yellowstone national park exhibit similar metabolic potential in different hypoxic microbial communities.

Jay ZJ, Rusch DB, Tringe SG, Bailey C, Jennings RM, Inskeep WP.

Appl Environ Microbiol. 2014 Jan;80(1):294-305. doi: 10.1128/AEM.02860-13.

10.

The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing.

Thiel V, Wood JM, Olsen MT, Tank M, Klatt CG, Ward DM, Bryant DA.

Front Microbiol. 2016 Jun 17;7:919. doi: 10.3389/fmicb.2016.00919.

11.

Phototrophic phylotypes dominate mesothermal microbial mats associated with hot springs in Yellowstone National Park.

Ross KA, Feazel LM, Robertson CE, Fathepure BZ, Wright KE, Turk-Macleod RM, Chan MM, Held NL, Spear JR, Pace NR.

Microb Ecol. 2012 Jul;64(1):162-70. doi: 10.1007/s00248-012-0012-3.

PMID:
22327269
12.

Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland).

Roeselers G, Norris TB, Castenholz RW, Rysgaard S, Glud RN, Kühl M, Muyzer G.

Environ Microbiol. 2007 Jan;9(1):26-38.

PMID:
17227409
13.

Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: 'La Salada de Chiprana' (NE Spain).

Jonkers HM, Ludwig R, Wit R, Pringault O, Muyzer G, Niemann H, Finke N, Beer D.

FEMS Microbiol Ecol. 2003 May 1;44(2):175-89. doi: 10.1016/S0168-6496(02)00464-6.

14.

Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone National Park.

Kozubal M, Macur RE, Korf S, Taylor WP, Ackerman GG, Nagy A, Inskeep WP.

Appl Environ Microbiol. 2008 Feb;74(4):942-9.

15.

Geomicrobiology of sublacustrine thermal vents in Yellowstone Lake: geochemical controls on microbial community structure and function.

Inskeep WP, Jay ZJ, Macur RE, Clingenpeel S, Tenney A, Lovalvo D, Beam JP, Kozubal MA, Shanks WC, Morgan LA, Kan J, Gorby Y, Yooseph S, Nealson K.

Front Microbiol. 2015 Oct 26;6:1044. doi: 10.3389/fmicb.2015.01044.

16.
17.

Niche specialization of novel Thaumarchaeota to oxic and hypoxic acidic geothermal springs of Yellowstone National Park.

Beam JP, Jay ZJ, Kozubal MA, Inskeep WP.

ISME J. 2014 Apr;8(4):938-51. doi: 10.1038/ismej.2013.193.

18.

Metagenome sequence analysis of filamentous microbial communities obtained from geochemically distinct geothermal channels reveals specialization of three aquificales lineages.

Takacs-Vesbach C, Inskeep WP, Jay ZJ, Herrgard MJ, Rusch DB, Tringe SG, Kozubal MA, Hamamura N, Macur RE, Fouke BW, Reysenbach AL, McDermott TR, Jennings Rd, Hengartner NW, Xie G.

Front Microbiol. 2013 May 29;4:84. doi: 10.3389/fmicb.2013.00084.

19.

Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring.

Elshahed MS, Senko JM, Najar FZ, Kenton SM, Roe BA, Dewers TA, Spear JR, Krumholz LR.

Appl Environ Microbiol. 2003 Sep;69(9):5609-21.

20.

Bacterial community composition in thermophilic microbial mats from five hot springs in central Tibet.

Lau MC, Aitchison JC, Pointing SB.

Extremophiles. 2009 Jan;13(1):139-49. doi: 10.1007/s00792-008-0205-3.

PMID:
19023516
Items per page

Supplemental Content

Support Center