Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Structural analysis of the mutant protein D26G of human γS-crystallin, associated with Coppock cataract.

Karri S, Kasetti RB, Vendra VP, Chandani S, Balasubramanian D.

Mol Vis. 2013 Jun 5;19:1231-7.

2.

The mutation V42M distorts the compact packing of the human gamma-S-crystallin molecule, resulting in congenital cataract.

Vendra VP, Chandani S, Balasubramanian D.

PLoS One. 2012;7(12):e51401. doi: 10.1371/journal.pone.0051401.

4.

Visualization of in situ intracellular aggregation of two cataract-associated human gamma-crystallin mutants: lose a tail, lose transparency.

Talla V, Srinivasan N, Balasubramanian D.

Invest Ophthalmol Vis Sci. 2008 Aug;49(8):3483-90. doi: 10.1167/iovs.07-1114.

PMID:
18421082
5.

Mutation causing self-aggregation in human gammaC-crystallin leading to congenital cataract.

Talla V, Narayanan C, Srinivasan N, Balasubramanian D.

Invest Ophthalmol Vis Sci. 2006 Dec;47(12):5212-7.

PMID:
17122105
6.

Hydrophobic core mutations associated with cataract development in mice destabilize human gammaD-crystallin.

Moreau KL, King J.

J Biol Chem. 2009 Nov 27;284(48):33285-95. doi: 10.1074/jbc.M109.031344.

7.
8.

The cataract-associated V41M mutant of human γS-crystallin shows specific structural changes that directly enhance local surface hydrophobicity.

Bharat SV, Shekhtman A, Pande J.

Biochem Biophys Res Commun. 2014 Jan 3;443(1):110-4. doi: 10.1016/j.bbrc.2013.11.073.

9.

Structural integrity of the Greek key motif in βγ-crystallins is vital for central eye lens transparency.

Vendra VP, Agarwal G, Chandani S, Talla V, Srinivasan N, Balasubramanian D.

PLoS One. 2013 Aug 6;8(8):e70336. doi: 10.1371/journal.pone.0070336.

10.

The G18V CRYGS mutation associated with human cataracts increases gammaS-crystallin sensitivity to thermal and chemical stress.

Ma Z, Piszczek G, Wingfield PT, Sergeev YV, Hejtmancik JF.

Biochemistry. 2009 Aug 4;48(30):7334-41. doi: 10.1021/bi900467a.

11.

The P23T cataract mutation causes loss of solubility of folded gammaD-crystallin.

Evans P, Wyatt K, Wistow GJ, Bateman OA, Wallace BA, Slingsby C.

J Mol Biol. 2004 Oct 15;343(2):435-44.

PMID:
15451671
12.

¹H, ¹³C, and ¹⁵N assignments of wild-type human γS-crystallin and its cataract-related variant γS-G18V.

Brubaker WD, Martin RW.

Biomol NMR Assign. 2012 Apr;6(1):63-7. doi: 10.1007/s12104-011-9326-1.

PMID:
21735120
13.

A novel gammaD-crystallin mutation causes mild changes in protein properties but leads to congenital coralliform cataract.

Zhang LY, Gong B, Tong JP, Fan DS, Chiang SW, Lou D, Lam DS, Yam GH, Pang CP.

Mol Vis. 2009 Aug 6;15:1521-9.

14.

Structural and biochemical characterization of the childhood cataract-associated R76S mutant of human γD-crystallin.

Ji F, Jung J, Gronenborn AM.

Biochemistry. 2012 Mar 27;51(12):2588-96. doi: 10.1021/bi300199d.

15.
16.

A novel mutation impairing the tertiary structure and stability of γC-crystallin (CRYGC) leads to cataract formation in humans and zebrafish lens.

Li XQ, Cai HC, Zhou SY, Yang JH, Xi YB, Gao XB, Zhao WJ, Li P, Zhao GY, Tong Y, Bao FC, Ma Y, Wang S, Yan YB, Lu CL, Ma X.

Hum Mutat. 2012 Feb;33(2):391-401. doi: 10.1002/humu.21648.

PMID:
22052681
17.
18.

A nonsense mutation in CRYGC associated with autosomal dominant congenital nuclear cataract in a Chinese family.

Yao K, Jin C, Zhu N, Wang W, Wu R, Jiang J, Shentu X.

Mol Vis. 2008 Jul 9;14:1272-6.

19.
20.

Mutation screening and genotype phenotype correlation of α-crystallin, γ-crystallin and GJA8 gene in congenital cataract.

Kumar M, Agarwal T, Khokhar S, Kumar M, Kaur P, Roy TS, Dada R.

Mol Vis. 2011 Mar 11;17:693-707.

Items per page

Supplemental Content

Support Center