Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 113

1.

The energetics of electric organ discharge generation in gymnotiform weakly electric fish.

Salazar VL, Krahe R, Lewis JE.

J Exp Biol. 2013 Jul 1;216(Pt 13):2459-68. doi: 10.1242/jeb.082735. Review.

3.

Energetic constraints on electric signalling in wave-type weakly electric fishes.

Reardon EE, Parisi A, Krahe R, Chapman LJ.

J Exp Biol. 2011 Dec 15;214(Pt 24):4141-50. doi: 10.1242/jeb.059444.

4.

Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae).

Turner CR, Derylo M, de Santana CD, Alves-Gomes JA, Smith GT.

J Exp Biol. 2007 Dec;210(Pt 23):4104-22.

5.

From the intrinsic properties to the functional role of a neuron phenotype: an example from electric fish during signal trade-off.

Nogueira J, Caputi AA.

J Exp Biol. 2013 Jul 1;216(Pt 13):2380-92. doi: 10.1242/jeb.082651. Review.

7.

Proximate and ultimate causes of signal diversity in the electric fish Gymnotus.

Crampton WG, Rodríguez-Cattáneo A, Lovejoy NR, Caputi AA.

J Exp Biol. 2013 Jul 1;216(Pt 13):2523-41. doi: 10.1242/jeb.083261. Review.

8.

Action potential energetics at the organismal level reveal a trade-off in efficiency at high firing rates.

Lewis JE, Gilmour KM, Moorhead MJ, Perry SF, Markham MR.

J Neurosci. 2014 Jan 1;34(1):197-201. doi: 10.1523/JNEUROSCI.3180-13.2014.

9.

Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish, Eigenmannia virescens.

Tan EW, Nizar JM, Carrera-G E, Fortune ES.

Behav Brain Res. 2005 Oct 14;164(1):83-92.

PMID:
16099058
10.

Food deprivation reduces and leptin increases the amplitude of an active sensory and communication signal in a weakly electric fish.

Sinnett PM, Markham MR.

Horm Behav. 2015 May;71:31-40. doi: 10.1016/j.yhbeh.2015.03.010. Epub 2015 Apr 11.

11.

Oxygen consumption in weakly electric Neotropical fishes.

Julian D, Crampton WG, Wohlgemuth SE, Albert JS.

Oecologia. 2003 Dec;137(4):502-11. Epub 2003 Sep 19.

PMID:
14505027
12.

Ontogeny and evolution of electric organs in gymnotiform fish.

Kirschbaum F, Schwassmann HO.

J Physiol Paris. 2008 Jul-Nov;102(4-6):347-56. doi: 10.1016/j.jphysparis.2008.10.008. Epub 2008 Oct 17.

PMID:
18984049
13.
14.

Regulation and modulation of electric waveforms in gymnotiform electric fish.

Stoddard PK, Zakon HH, Markham MR, McAnelly L.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Jun;192(6):613-24. Epub 2006 Jan 26. Review.

15.
16.

Electrolocation and electrocommunication in pulse gymnotids: signal carriers, pre-receptor mechanisms and the electrosensory mosaic.

Caputi AA, Castelló ME, Aguilera P, Trujillo-Cenóz O.

J Physiol Paris. 2002 Sep-Dec;96(5-6):493-505. Review.

PMID:
14692497
17.

Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus.

Hupé GJ, Lewis JE.

J Exp Biol. 2008 May;211(Pt 10):1657-67. doi: 10.1242/jeb.013516. Erratum in: J Exp Biol. 2009 Dec;212(Pt 24):4101.

18.

Weakly electric fish display behavioral responses to envelopes naturally occurring during movement: implications for neural processing.

Metzen MG, Chacron MJ.

J Exp Biol. 2014 Apr 15;217(Pt 8):1381-91. doi: 10.1242/jeb.098574. Epub 2013 Dec 20.

19.

Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.

Ramcharitar JU, Tan EW, Fortune ES.

J Neurophysiol. 2006 Nov;96(5):2319-26. Epub 2006 Jun 21.

20.

Behavioral ecology, endocrinology and signal reliability of electric communication.

Gavassa S, Goldina A, Silva AC, Stoddard PK.

J Exp Biol. 2013 Jul 1;216(Pt 13):2403-11. doi: 10.1242/jeb.082255. Review.

Supplemental Content

Support Center