Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 150

1.

Facile synthesis of Pd-Ir bimetallic octapods and nanocages through galvanic replacement and co-reduction, and their use for hydrazine decomposition.

Liu M, Zheng Y, Xie S, Li N, Lu N, Wang J, Kim MJ, Guo L, Xia Y.

Phys Chem Chem Phys. 2013 Jul 28;15(28):11822-9. doi: 10.1039/c3cp51950c. Epub 2013 Jun 12.

PMID:
23760572
2.

Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen.

Zhang H, Jin M, Liu H, Wang J, Kim MJ, Yang D, Xie Z, Liu J, Xia Y.

ACS Nano. 2011 Oct 25;5(10):8212-22. doi: 10.1021/nn202896q. Epub 2011 Sep 9.

PMID:
21888409
3.

Synthesis and characterization of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with porous walls and a yolk-shell structure through galvanic replacement reactions.

Xie S, Jin M, Tao J, Wang Y, Xie Z, Zhu Y, Xia Y.

Chemistry. 2012 Nov 19;18(47):14974-80. doi: 10.1002/chem.201202477. Epub 2012 Oct 29.

PMID:
23108763
4.

Facile synthesis of iridium nanocrystals with well-controlled facets using seed-mediated growth.

Xia X, Figueroa-Cosme L, Tao J, Peng HC, Niu G, Zhu Y, Xia Y.

J Am Chem Soc. 2014 Aug 6;136(31):10878-81. doi: 10.1021/ja505716v. Epub 2014 Jul 28.

PMID:
25058427
5.

Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.

Hong JW, Kang SW, Choi BS, Kim D, Lee SB, Han SW.

ACS Nano. 2012 Mar 27;6(3):2410-9. doi: 10.1021/nn2046828. Epub 2012 Feb 29.

PMID:
22360814
6.

Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction.

Zhang H, Jin M, Wang J, Li W, Camargo PH, Kim MJ, Yang D, Xie Z, Xia Y.

J Am Chem Soc. 2011 Apr 20;133(15):6078-89. doi: 10.1021/ja201156s. Epub 2011 Mar 25.

PMID:
21438596
7.

Facile synthesis of Ag nanocubes and Au nanocages.

Skrabalak SE, Au L, Li X, Xia Y.

Nat Protoc. 2007;2(9):2182-90.

PMID:
17853874
8.

Synthesis of hollow and trimetallic nanostructures by seed-mediated co-reduction.

Weiner RG, Smith AF, Skrabalak SE.

Chem Commun (Camb). 2015 May 25;51(42):8872-5. doi: 10.1039/c5cc02318a.

PMID:
25925127
9.

Kinetically controlled autocatalytic chemical process for bulk production of bimetallic core-shell structured nanoparticles.

Taufany F, Pan CJ, Rick J, Chou HL, Tsai MC, Hwang BJ, Liu DG, Lee JF, Tang MT, Lee YC, Chen CI.

ACS Nano. 2011 Dec 27;5(12):9370-81. doi: 10.1021/nn202545a. Epub 2011 Nov 9.

PMID:
22047129
10.

Enriching Silver Nanocrystals with a Second Noble Metal.

Wu Y, Sun X, Yang Y, Li J, Zhang Y, Qin D.

Acc Chem Res. 2017 Jul 18;50(7):1774-1784. doi: 10.1021/acs.accounts.7b00216. Epub 2017 Jul 5.

PMID:
28678472
11.

Catalytic and electrocatalytic oxidation of ethanol over palladium-based nanoalloy catalysts.

Yin J, Shan S, Ng MS, Yang L, Mott D, Fang W, Kang N, Luo J, Zhong CJ.

Langmuir. 2013 Jul 23;29(29):9249-58. doi: 10.1021/la401839m. Epub 2013 Jul 10.

PMID:
23841935
12.

Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth.

Lim B, Wang J, Camargo PH, Jiang M, Kim MJ, Xia Y.

Nano Lett. 2008 Aug;8(8):2535-40. doi: 10.1021/nl8016434. Epub 2008 Jul 11.

PMID:
18616327
13.

Strain-induced Stranski-Krastanov growth of Pd@Pt core-shell hexapods and octapods as electrocatalysts for methanol oxidation.

Xiong Y, Ma Y, Li J, Huang J, Yan Y, Zhang H, Wu J, Yang D.

Nanoscale. 2017 Aug 10;9(31):11077-11084. doi: 10.1039/c7nr02638b.

PMID:
28741632
14.

Gold clusters alloyed to nanoporous palladium surfaces as highly active bimetallic oxidation catalysts.

Li Y, Zhu E, Chen Y, Chiu C, Yu H, Huang X, Hicks R, Huang Y.

ChemSusChem. 2013 Oct;6(10):1868-72. doi: 10.1002/cssc.201300477. Epub 2013 Sep 12. No abstract available.

PMID:
24039061
15.

Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution.

Nemamcha A, Rehspringer JL, Khatmi D.

J Phys Chem B. 2006 Jan 12;110(1):383-7.

PMID:
16471546
16.

Metallic double shell hollow nanocages: the challenges of their synthetic techniques.

Mahmoud MA, El-Sayed MA.

Langmuir. 2012 Mar 6;28(9):4051-9. doi: 10.1021/la203982h. Epub 2012 Feb 27.

PMID:
22239672
17.

Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process.

Xiong Y, Chen J, Wiley B, Xia Y, Yin Y, Li ZY.

Nano Lett. 2005 Jul;5(7):1237-42.

PMID:
16178217
18.

Triangular Ag-Pd alloy nanoprisms: rational synthesis with high-efficiency for electrocatalytic oxygen reduction.

Xu L, Luo Z, Fan Z, Zhang X, Tan C, Li H, Zhang H, Xue C.

Nanoscale. 2014 Oct 21;6(20):11738-43. doi: 10.1039/c4nr03600j. Epub 2014 Aug 26.

PMID:
25155648
19.

A versatile route to core-shell catalysts: synthesis of dispersible M@oxide (M=Pd, Pt; oxide=TiO2, ZrO2) nanostructures by self-assembly.

Bakhmutsky K, Wieder NL, Cargnello M, Galloway B, Fornasiero P, Gorte RJ.

ChemSusChem. 2012 Jan 9;5(1):140-8. doi: 10.1002/cssc.201100491.

PMID:
22250137
20.

A sensitive amperometric sensor for hydrazine and hydrogen peroxide based on palladium nanoparticles/onion-like mesoporous carbon vesicle.

Bo X, Bai J, Ju J, Guo L.

Anal Chim Acta. 2010 Aug 18;675(1):29-35. doi: 10.1016/j.aca.2010.07.006. Epub 2010 Jul 15.

PMID:
20708112

Supplemental Content

Support Center