Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Self-regulated radius of spontaneously formed GaN nanowires in molecular beam epitaxy.

Fernández-Garrido S, Kaganer VM, Sabelfeld KK, Gotschke T, Grandal J, Calleja E, Geelhaar L, Brandt O.

Nano Lett. 2013 Jul 10;13(7):3274-80. doi: 10.1021/nl401483e. Epub 2013 Jun 17.

PMID:
23758601
2.

Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy.

Schuster F, Hetzl M, Weiszer S, Garrido JA, de la Mata M, Magen C, Arbiol J, Stutzmann M.

Nano Lett. 2015 Mar 11;15(3):1773-9. doi: 10.1021/nl504446r. Epub 2015 Feb 3.

PMID:
25633130
3.

Model of patterned self-assisted nanowire growth.

Gibson SJ, LaPierre RR.

Nanotechnology. 2014 Oct 17;25(41):415304. Epub 2014 Jun 26.

PMID:
25258192
4.

Spontaneous nucleation and growth of GaN nanowires: the fundamental role of crystal polarity.

Fernández-Garrido S, Kong X, Gotschke T, Calarco R, Geelhaar L, Trampert A, Brandt O.

Nano Lett. 2012 Dec 12;12(12):6119-25. doi: 10.1021/nl302664q. Epub 2012 Nov 9.

PMID:
23130785
5.

Improved control over spontaneously formed GaN nanowires in molecular beam epitaxy using a two-step growth process.

Zettler JK, Corfdir P, Geelhaar L, Riechert H, Brandt O, Fernández-Garrido S.

Nanotechnology. 2015 Nov 6;26(44):445604. doi: 10.1088/0957-4484/26/44/445604. Epub 2015 Oct 12.

PMID:
26457772
6.

Detailed modeling of the epitaxial growth of GaAs nanowires.

De Jong E, LaPierre RR, Wen JZ.

Nanotechnology. 2010 Jan 29;21(4):045602. doi: 10.1088/0957-4484/21/4/045602. Epub 2009 Dec 10.

PMID:
20009168
7.

Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy.

Bastiman F, Küpers H, Somaschini C, Geelhaar L.

Nanotechnology. 2016 Mar 4;27(9):095601. doi: 10.1088/0957-4484/27/9/095601. Epub 2016 Jan 29.

PMID:
26822408
8.

Nucleation, Growth, and Bundling of GaN Nanowires in Molecular Beam Epitaxy: Disentangling the Origin of Nanowire Coalescence.

Kaganer VM, Fernández-Garrido S, Dogan P, Sabelfeld KK, Brandt O.

Nano Lett. 2016 Jun 8;16(6):3717-25. doi: 10.1021/acs.nanolett.6b01044. Epub 2016 May 13.

PMID:
27168127
9.

Self-catalyzed GaAsP nanowires grown on silicon substrates by solid-source molecular beam epitaxy.

Zhang Y, Aagesen M, Holm JV, Jørgensen HI, Wu J, Liu H.

Nano Lett. 2013 Aug 14;13(8):3897-902. doi: 10.1021/nl401981u. Epub 2013 Aug 2.

PMID:
23899047
10.

Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy.

Bauer B, Rudolph A, Soda M, Fontcuberta i Morral A, Zweck J, Schuh D, Reiger E.

Nanotechnology. 2010 Oct 29;21(43):435601. doi: 10.1088/0957-4484/21/43/435601. Epub 2010 Sep 29.

PMID:
20876983
11.

New Insights into the Origins of Sb-Induced Effects on Self-Catalyzed GaAsSb Nanowire Arrays.

Ren D, Dheeraj DL, Jin C, Nilsen JS, Huh J, Reinertsen JF, Munshi AM, Gustafsson A, van Helvoort AT, Weman H, Fimland BO.

Nano Lett. 2016 Feb 10;16(2):1201-9. doi: 10.1021/acs.nanolett.5b04503. Epub 2016 Jan 8.

PMID:
26726825
12.

Self-assembled growth of GaN nanowires on amorphous Al x O y : from nucleation to the formation of dense nanowire ensembles.

Sobanska M, Fernández-Garrido S, Zytkiewicz ZR, Tchutchulashvili G, Gieraltowska S, Brandt O, Geelhaar L.

Nanotechnology. 2016 Aug 12;27(32):325601. doi: 10.1088/0957-4484/27/32/325601. Epub 2016 Jun 29.

PMID:
27354451
13.

Morphology of self-catalyzed GaN nanowires and chronology of their formation by molecular beam epitaxy.

Galopin E, Largeau L, Patriarche G, Travers L, Glas F, Harmand JC.

Nanotechnology. 2011 Jun 17;22(24):245606. doi: 10.1088/0957-4484/22/24/245606. Epub 2011 Apr 21.

PMID:
21508494
14.

Epitaxy of GaN Nanowires on Graphene.

Kumaresan V, Largeau L, Madouri A, Glas F, Zhang H, Oehler F, Cavanna A, Babichev A, Travers L, Gogneau N, Tchernycheva M, Harmand JC.

Nano Lett. 2016 Aug 10;16(8):4895-902. doi: 10.1021/acs.nanolett.6b01453. Epub 2016 Jul 26.

PMID:
27414518
15.

Evidence for structural phase transitions induced by the triple phase line shift in self-catalyzed GaAs nanowires.

Yu X, Wang H, Lu J, Zhao J, Misuraca J, Xiong P, von Molnár S.

Nano Lett. 2012 Oct 10;12(10):5436-42. doi: 10.1021/nl303323t. Epub 2012 Sep 18.

PMID:
22984828
16.

Surface passivation and self-regulated shell growth in selective area-grown GaN-(Al,Ga)N core-shell nanowires.

Hetzl M, Winnerl J, Francaviglia L, Kraut M, Döblinger M, Matich S, Fontcuberta I Morral A, Stutzmann M.

Nanoscale. 2017 May 17. doi: 10.1039/c7nr00802c. [Epub ahead of print]

PMID:
28513695
17.

Plasmon excitation in electron energy-loss spectroscopy for determination of indium concentration in (In,Ga)N/GaN nanowires.

Kong X, Albert S, Bengoechea-Encabo A, Sanchez-Garcia MA, Calleja E, Trampert A.

Nanotechnology. 2012 Dec 7;23(48):485701. doi: 10.1088/0957-4484/23/48/485701. Epub 2012 Nov 2.

PMID:
23123435
18.

Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiO(x) by catalyst-free molecular beam epitaxy.

Zhao S, Kibria MG, Wang Q, Nguyen HP, Mi Z.

Nanoscale. 2013 Jun 21;5(12):5283-7. doi: 10.1039/c3nr00387f.

PMID:
23661186
19.

Monodisperse (In, Ga)N insertions in catalyst-free-grown GaN(0001) nanowires.

Knelangen M, Hanke M, Luna E, Schrottke L, Brandt O, Trampert A.

Nanotechnology. 2011 Sep 7;22(36):365703. doi: 10.1088/0957-4484/22/36/365703. Epub 2011 Aug 11. Erratum in: Nanotechnology. 2011 Nov 18;22(46):469501.

PMID:
21836335
20.

Nanowires as semi-rigid substrates for growth of thick, In(x)Ga(1-x)N (x > 0.4) epi-layers without phase segregation for photoelectrochemical water splitting.

Pendyala C, Jasinski JB, Kim JH, Vendra VK, Lisenkov S, Menon M, Sunkara MK.

Nanoscale. 2012 Oct 21;4(20):6269-75.

PMID:
22968333

Supplemental Content

Support Center