Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 127

1.

Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles.

Zheng M, Su Z, Ji X, Ma G, Wang P, Zhang S.

J Biotechnol. 2013 Oct 20;168(2):212-7. doi: 10.1016/j.jbiotec.2013.05.016. Epub 2013 Jun 10.

PMID:
23756150
2.

Effect of molecular mobility on coupled enzymatic reactions involving cofactor regeneration using nanoparticle-attached enzymes.

Zheng M, Zhang S, Ma G, Wang P.

J Biotechnol. 2011 Jul 20;154(4):274-80. doi: 10.1016/j.jbiotec.2011.04.013. Epub 2011 Jun 12.

PMID:
21684312
3.

Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration.

Liu W, Zhang S, Wang P.

J Biotechnol. 2009 Jan 1;139(1):102-7. doi: 10.1016/j.jbiotec.2008.09.015. Epub 2008 Oct 19.

PMID:
19000722
4.

Enabling multienzyme biocatalysis using nanoporous materials.

El-Zahab B, Jia H, Wang P.

Biotechnol Bioeng. 2004 Jul 20;87(2):178-83.

PMID:
15236246
5.

Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration.

Zhang Y, Gao F, Zhang SP, Su ZG, Ma GH, Wang P.

Bioresour Technol. 2011 Jan;102(2):1837-43. doi: 10.1016/j.biortech.2010.09.069. Epub 2010 Sep 29.

PMID:
20947342
6.

Nanotube-supported bioproduction of 4-hydroxy-2-butanone via in situ cofactor regeneration.

Wang L, Zhang H, Ching CB, Chen Y, Jiang R.

Appl Microbiol Biotechnol. 2012 Jun;94(5):1233-41. doi: 10.1007/s00253-011-3699-z. Epub 2011 Nov 25.

PMID:
22116631
7.

Nanoporous silica glass for the immobilization of interactive enzyme systems.

Buthe A, Wu S, Wang P.

Methods Mol Biol. 2011;679:37-48. doi: 10.1007/978-1-60761-895-9_5.

PMID:
20865387
8.

Particle-tethered NADH for production of methanol from CO(2) catalyzed by coimmobilized enzymes.

El-Zahab B, Donnelly D, Wang P.

Biotechnol Bioeng. 2008 Feb 15;99(3):508-14.

PMID:
17680680
9.

Nanoparticle-tethered NAD(+) with in situ cofactor regeneration.

Li Y, Liang H, Sun L, Wu J, Yuan Q.

Biotechnol Lett. 2013 Jun;35(6):915-9. doi: 10.1007/s10529-013-1156-z. Epub 2013 Feb 16.

PMID:
23417259
10.

Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes.

Ji X, Su Z, Wang P, Ma G, Zhang S.

ACS Nano. 2015;9(4):4600-10. doi: 10.1021/acsnano.5b01278. Epub 2015 Apr 13.

PMID:
25857747
11.

The co-immobilization of P450-type nitric oxide reductase and glucose dehydrogenase for the continuous reduction of nitric oxide via cofactor recycling.

Garny S, Beeton-Kempen N, Gerber I, Verschoor J, Jordaan J.

Enzyme Microb Technol. 2016 Apr;85:71-81. doi: 10.1016/j.enzmictec.2015.10.006. Epub 2015 Oct 23.

PMID:
26920484
12.

Enzymatic synthesis of L-lactic acid from carbon dioxide and ethanol with an inherent cofactor regeneration cycle.

Tong X, El-Zahab B, Zhao X, Liu Y, Wang P.

Biotechnol Bioeng. 2011 Feb;108(2):465-9. doi: 10.1002/bit.22938.

PMID:
20830681
13.

Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems.

Hummel W, Gröger H.

J Biotechnol. 2014 Dec 10;191:22-31. doi: 10.1016/j.jbiotec.2014.07.449. Epub 2014 Aug 4.

PMID:
25102236
14.

Silica-encapsulated magnetic nanoparticles: enzyme immobilization and cytotoxic study.

Ashtari K, Khajeh K, Fasihi J, Ashtari P, Ramazani A, Vali H.

Int J Biol Macromol. 2012 May 1;50(4):1063-9. doi: 10.1016/j.ijbiomac.2011.12.025. Epub 2012 Jan 16.

PMID:
22269345
15.

A novel method for preparation of MNP@CS-tethered coenzyme for coupled oxidoreductase system.

Chen G, Wu Z, Ma Y.

J Biotechnol. 2015 Feb 20;196-197:52-7. doi: 10.1016/j.jbiotec.2015.01.016. Epub 2015 Jan 21.

PMID:
25617681
16.

Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis.

Verma ML, Barrow CJ, Kennedy JF, Puri M.

Int J Biol Macromol. 2012 Mar 1;50(2):432-7. doi: 10.1016/j.ijbiomac.2011.12.029. Epub 2012 Jan 2.

PMID:
22230612
17.

Chitosan-mediated formation of biomimetic silica nanoparticles: an effective method for manganese peroxidase immobilization and stabilization.

Luan PP, Jiang YJ, Zhang SP, Gao J, Su ZG, Ma GH, Zhang YF.

J Biosci Bioeng. 2014 Nov;118(5):575-82. doi: 10.1016/j.jbiosc.2014.05.003. Epub 2014 Jun 7.

PMID:
24913823
18.

Influence of silica-derived nano-supporters on cellobiase after immobilization.

Wang P, Hu X, Cook S, Hwang HM.

Appl Biochem Biotechnol. 2009 Jul;158(1):88-96. doi: 10.1007/s12010-008-8321-1. Epub 2008 Aug 5.

PMID:
18679593
19.

Immobilization of L-arabinitol dehydrogenase on aldehyde-functionalized silicon oxide nanoparticles for L-xylulose production.

Singh RK, Tiwari MK, Singh R, Haw JR, Lee JK.

Appl Microbiol Biotechnol. 2014 Feb;98(3):1095-104. doi: 10.1007/s00253-013-5209-y. Epub 2013 Nov 6.

PMID:
24193245
20.

Durable cofactor immobilization in sol-gel bio-composite thin films for reagentless biosensors and bioreactors using dehydrogenases.

Wang Z, Etienne M, Quilès F, Kohring GW, Walcarius A.

Biosens Bioelectron. 2012 Feb 15;32(1):111-7. doi: 10.1016/j.bios.2011.11.043. Epub 2011 Dec 6.

PMID:
22197100

Supplemental Content

Support Center