Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 151

1.
2.

Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting.

Mao A, Park NG, Han GY, Park JH.

Nanotechnology. 2011 Apr 29;22(17):175703. doi: 10.1088/0957-4484/22/17/175703. Epub 2011 Mar 16.

PMID:
21411913
3.

Enhanced photoelectrochemical cell property from alpha-Fe2O3 nanoparticle decoration on vertically grown TiO2 nanotubes arrays.

Mao A, Meng X, Kim MS, Yu JB, Han GY, Park JH.

J Nanosci Nanotechnol. 2011 Aug;11(8):7290-3.

PMID:
22103179
4.

Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance.

Li Y, Wei X, Zhu B, Wang H, Tang Y, Sum TC, Chen X.

Nanoscale. 2016 Jun 7;8(21):11284-90. doi: 10.1039/c6nr02430k. Epub 2016 May 18.

PMID:
27189633
5.

Abnormal Cathodic Photocurrent Generated on an n-Type FeOOH Nanorod-Array Photoelectrode.

Chen H, Lyu M, Liu G, Wang L.

Chemistry. 2016 Mar 24;22(14):4802-8. doi: 10.1002/chem.201504512. Epub 2016 Feb 16.

PMID:
26879339
6.

Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: nanorods versus nanotubes.

Mao A, Shin K, Kim JK, Wang DH, Han GY, Park JH.

ACS Appl Mater Interfaces. 2011 Jun;3(6):1852-8. doi: 10.1021/am200407t. Epub 2011 May 18.

PMID:
21557610
7.

Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.

Fu L, Yu H, Li Y, Zhang C, Wang X, Shao Z, Yi B.

Phys Chem Chem Phys. 2014 Mar 7;16(9):4284-90. doi: 10.1039/c3cp54240h.

PMID:
24451918
8.

Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.

Shen S, Guo P, Wheeler DA, Jiang J, Lindley SA, Kronawitter CX, Zhang JZ, Guo L, Mao SS.

Nanoscale. 2013 Oct 21;5(20):9867-74. doi: 10.1039/c3nr03245k.

PMID:
23974247
9.

Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.

Subramanian A, Annamalai A, Lee HH, Choi SH, Ryu J, Park JH, Jang JS.

ACS Appl Mater Interfaces. 2016 Aug 3;8(30):19428-37. doi: 10.1021/acsami.6b04528. Epub 2016 Jul 25.

PMID:
27420603
10.

Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.

Ji M, Cai J, Ma Y, Qi L.

ACS Appl Mater Interfaces. 2016 Feb 17;8(6):3651-60. doi: 10.1021/acsami.5b08116. Epub 2015 Oct 30.

PMID:
26517010
11.

Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.

Wang J, Feng B, Su J, Guo L.

ACS Appl Mater Interfaces. 2016 Sep 7;8(35):23143-50. doi: 10.1021/acsami.6b07723. Epub 2016 Aug 25.

PMID:
27508404
12.

Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation.

Xiong D, Li W, Wang X, Liu L.

Nanotechnology. 2016 Sep 16;27(37):375401. doi: 10.1088/0957-4484/27/37/375401. Epub 2016 Aug 3.

PMID:
27486842
13.

Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity.

Lu Y, Zhang J, Ge L, Han C, Qiu P, Fang S.

J Colloid Interface Sci. 2016 Dec 1;483:146-153. doi: 10.1016/j.jcis.2016.08.022. Epub 2016 Aug 10.

PMID:
27552423
14.

Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays.

Wang L, Zhou X, Nguyen NT, Schmuki P.

ChemSusChem. 2015 Feb;8(4):618-22. doi: 10.1002/cssc.201403013. Epub 2015 Jan 7.

PMID:
25581403
15.

Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting.

Shen S, Zhou J, Dong CL, Hu Y, Tseng EN, Guo P, Guo L, Mao SS.

Sci Rep. 2014 Oct 15;4:6627. doi: 10.1038/srep06627.

16.

Heterogeneous p-n Junction CdS/Cu2O Nanorod Arrays: Synthesis and Superior Visible-Light-Driven Photoelectrochemical Performance for Hydrogen Evolution.

Wang L, Wang W, Chen Y, Yao L, Zhao X, Shi H, Cao M, Liang Y.

ACS Appl Mater Interfaces. 2018 Apr 11;10(14):11652-11662. doi: 10.1021/acsami.7b19530. Epub 2018 Mar 28.

PMID:
29544248
17.

Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting.

Li Y, Takata T, Cha D, Takanabe K, Minegishi T, Kubota J, Domen K.

Adv Mater. 2013 Jan 4;25(1):125-31. doi: 10.1002/adma.201202582. Epub 2012 Sep 18.

PMID:
22987610
18.

Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.

Diab M, Mokari T.

Inorg Chem. 2014 Feb 17;53(4):2304-9. doi: 10.1021/ic403027r. Epub 2014 Jan 28.

PMID:
24471819
19.

Photoelectrochemical Properties of Vertically Aligned CuInS2 Nanorod Arrays Prepared via Template-Assisted Growth and Transfer.

Yang W, Oh Y, Kim J, Kim H, Shin H, Moon J.

ACS Appl Mater Interfaces. 2016 Jan 13;8(1):425-31. doi: 10.1021/acsami.5b09241. Epub 2015 Dec 22.

PMID:
26645722
20.

Facile Synthesis of Ultrafine Hematite Nanowire Arrays in Mixed Water-Ethanol-Acetic Acid Solution for Enhanced Charge Transport and Separation.

Wang J, Wang M, Zhang T, Wang Z, Guo P, Su J, Guo L.

ACS Appl Mater Interfaces. 2018 Apr 18;10(15):12594-12602. doi: 10.1021/acsami.7b18534. Epub 2018 Apr 3.

PMID:
29577716

Supplemental Content

Support Center