Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 158

1.

Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation.

Iguchi M, Kujuro Y, Okatsu K, Koyano F, Kosako H, Kimura M, Suzuki N, Uchiyama S, Tanaka K, Matsuda N.

J Biol Chem. 2013 Jul 26;288(30):22019-32. doi: 10.1074/jbc.M113.467530. Epub 2013 Jun 10.

2.

Ubiquitin is phosphorylated by PINK1 to activate parkin.

Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon EA, Trempe JF, Saeki Y, Tanaka K, Matsuda N.

Nature. 2014 Jun 5;510(7503):162-6. doi: 10.1038/nature13392. Epub 2014 Jun 4.

PMID:
24784582
3.

Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation.

Kazlauskaite A, Martínez-Torres RJ, Wilkie S, Kumar A, Peltier J, Gonzalez A, Johnson C, Zhang J, Hope AG, Peggie M, Trost M, van Aalten DM, Alessi DR, Prescott AR, Knebel A, Walden H, Muqit MM.

EMBO Rep. 2015 Aug;16(8):939-54. doi: 10.15252/embr.201540352. Epub 2015 Jun 25.

4.

PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy.

Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K.

J Cell Biol. 2010 Apr 19;189(2):211-21. doi: 10.1083/jcb.200910140.

5.

Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria.

Koyano F, Matsuda N.

Biochim Biophys Acta. 2015 Oct;1853(10 Pt B):2791-6. doi: 10.1016/j.bbamcr.2015.02.009. Epub 2015 Feb 18. Review.

6.

PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65.

Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M, Knebel A, Alessi DR, Muqit MM.

Open Biol. 2012 May;2(5):120080. doi: 10.1098/rsob.120080.

7.

Mitochondrial hexokinase HKI is a novel substrate of the Parkin ubiquitin ligase.

Okatsu K, Iemura S, Koyano F, Go E, Kimura M, Natsume T, Tanaka K, Matsuda N.

Biochem Biophys Res Commun. 2012 Nov 9;428(1):197-202. doi: 10.1016/j.bbrc.2012.10.041. Epub 2012 Oct 13.

PMID:
23068103
8.

Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65.

Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, Alessi DR, Knebel A, Trost M, Muqit MM.

Biochem J. 2014 May 15;460(1):127-39. doi: 10.1042/BJ20140334.

9.

The principal PINK1 and Parkin cellular events triggered in response to dissipation of mitochondrial membrane potential occur in primary neurons.

Koyano F, Okatsu K, Ishigaki S, Fujioka Y, Kimura M, Sobue G, Tanaka K, Matsuda N.

Genes Cells. 2013 Aug;18(8):672-81. doi: 10.1111/gtc.12066. Epub 2013 Jun 10.

10.

Lysine 27 ubiquitination of the mitochondrial transport protein Miro is dependent on serine 65 of the Parkin ubiquitin ligase.

Birsa N, Norkett R, Wauer T, Mevissen TE, Wu HC, Foltynie T, Bhatia K, Hirst WD, Komander D, Plun-Favreau H, Kittler JT.

J Biol Chem. 2014 May 23;289(21):14569-82. doi: 10.1074/jbc.M114.563031. Epub 2014 Mar 26.

11.

Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity.

Kazlauskaite A, Kelly V, Johnson C, Baillie C, Hastie CJ, Peggie M, Macartney T, Woodroof HI, Alessi DR, Pedrioli PG, Muqit MM.

Open Biol. 2014 Mar 19;4:130213. doi: 10.1098/rsob.130213.

12.

Convergence of Parkin, PINK1, and α-Synuclein on Stress-induced Mitochondrial Morphological Remodeling.

Norris KL, Hao R, Chen LF, Lai CH, Kapur M, Shaughnessy PJ, Chou D, Yan J, Taylor JP, Engelender S, West AE, Lim KL, Yao TP.

J Biol Chem. 2015 May 29;290(22):13862-74. doi: 10.1074/jbc.M114.634063. Epub 2015 Apr 10.

13.

Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy.

Ordureau A, Heo JM, Duda DM, Paulo JA, Olszewski JL, Yanishevski D, Rinehart J, Schulman BA, Harper JW.

Proc Natl Acad Sci U S A. 2015 May 26;112(21):6637-42. doi: 10.1073/pnas.1506593112. Epub 2015 May 12.

14.

PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding.

Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ.

J Cell Biol. 2013 Jan 21;200(2):163-72. doi: 10.1083/jcb.201210111. Epub 2013 Jan 14.

15.

Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity.

Ham SJ, Lee SY, Song S, Chung JR, Choi S, Chung J.

J Biol Chem. 2016 Jan 22;291(4):1803-16. doi: 10.1074/jbc.M115.687319. Epub 2015 Dec 2.

16.

Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism.

Zheng X, Hunter T.

Cell Res. 2013 Jul;23(7):886-97. doi: 10.1038/cr.2013.66. Epub 2013 May 14.

17.

Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons.

Rakovic A, Shurkewitsch K, Seibler P, Grünewald A, Zanon A, Hagenah J, Krainc D, Klein C.

J Biol Chem. 2013 Jan 25;288(4):2223-37. doi: 10.1074/jbc.M112.391680. Epub 2012 Dec 4.

18.

PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity.

Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K, Sarraf SA, Banerjee S, Youle RJ.

J Cell Biol. 2014 Apr 28;205(2):143-53. doi: 10.1083/jcb.201402104. Epub 2014 Apr 21.

19.

Phosphorylation of mitochondrial polyubiquitin by PINK1 promotes Parkin mitochondrial tethering.

Shiba-Fukushima K, Arano T, Matsumoto G, Inoshita T, Yoshida S, Ishihama Y, Ryu KY, Nukina N, Hattori N, Imai Y.

PLoS Genet. 2014 Dec 4;10(12):e1004861. doi: 10.1371/journal.pgen.1004861. eCollection 2014 Dec.

20.

A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment.

Okatsu K, Uno M, Koyano F, Go E, Kimura M, Oka T, Tanaka K, Matsuda N.

J Biol Chem. 2013 Dec 20;288(51):36372-84. doi: 10.1074/jbc.M113.509653. Epub 2013 Nov 4.

Supplemental Content

Support Center