Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 135

1.

Contribution of interleukin-12 p35 (IL-12p35) and IL-12p40 to protective immunity and pathology in mice infected with Chlamydia muridarum.

Chen L, Lei L, Zhou Z, He J, Xu S, Lu C, Chen J, Yang Z, Wu G, Yeh IT, Zhong G, Wu Y.

Infect Immun. 2013 Aug;81(8):2962-71. doi: 10.1128/IAI.00161-13. Epub 2013 Jun 10.

3.

Mice deficient in MyD88 Develop a Th2-dominant response and severe pathology in the upper genital tract following Chlamydia muridarum infection.

Chen L, Lei L, Chang X, Li Z, Lu C, Zhang X, Wu Y, Yeh IT, Zhong G.

J Immunol. 2010 Mar 1;184(5):2602-10. doi: 10.4049/jimmunol.0901593. Epub 2010 Feb 1.

4.

Significant role of IL-1 signaling, but limited role of inflammasome activation, in oviduct pathology during Chlamydia muridarum genital infection.

Nagarajan UM, Sikes JD, Yeruva L, Prantner D.

J Immunol. 2012 Mar 15;188(6):2866-75. doi: 10.4049/jimmunol.1103461. Epub 2012 Feb 13.

5.

Th1 cytokine responses fail to effectively control Chlamydia lung infection in ICOS ligand knockout mice.

Kadkhoda K, Wang S, Joyee AG, Fan Y, Yang J, Yang X.

J Immunol. 2010 Apr 1;184(7):3780-8. doi: 10.4049/jimmunol.0901384. Epub 2010 Feb 26.

6.

Endogenous IFN-gamma production is induced and required for protective immunity against pulmonary chlamydial infection in neonatal mice.

Jupelli M, Guentzel MN, Meier PA, Zhong G, Murthy AK, Arulanandam BP.

J Immunol. 2008 Mar 15;180(6):4148-55.

7.

Distinct roles of CD28- and CD40 ligand-mediated costimulation in the development of protective immunity and pathology during Chlamydia muridarum urogenital infection in mice.

Chen L, Cheng W, Shivshankar P, Lei L, Zhang X, Wu Y, Yeh IT, Zhong G.

Infect Immun. 2009 Jul;77(7):3080-9. doi: 10.1128/IAI.00611-08. Epub 2009 Apr 27.

8.

Antigen-specific CD4+ T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection.

Li W, Murthy AK, Guentzel MN, Seshu J, Forsthuber TG, Zhong G, Arulanandam BP.

J Immunol. 2008 Mar 1;180(5):3375-82.

9.

Induction of protective immunity against Chlamydia muridarum intracervical infection in DBA/1j mice.

Tang L, Yang Z, Zhang H, Zhou Z, Arulanandam B, Baseman J, Zhong G.

Vaccine. 2014 Mar 10;32(12):1407-13. doi: 10.1016/j.vaccine.2013.10.018. Epub 2013 Nov 1.

10.
11.

Interleukin-17 contributes to generation of Th1 immunity and neutrophil recruitment during Chlamydia muridarum genital tract infection but is not required for macrophage influx or normal resolution of infection.

Scurlock AM, Frazer LC, Andrews CW Jr, O'Connell CM, Foote IP, Bailey SL, Chandra-Kuntal K, Kolls JK, Darville T.

Infect Immun. 2011 Mar;79(3):1349-62. doi: 10.1128/IAI.00984-10. Epub 2010 Dec 13.

12.

The duration of Chlamydia muridarum genital tract infection and associated chronic pathological changes are reduced in IL-17 knockout mice but protection is not increased further by immunization.

Andrew DW, Cochrane M, Schripsema JH, Ramsey KH, Dando SJ, O'Meara CP, Timms P, Beagley KW.

PLoS One. 2013 Sep 20;8(9):e76664. doi: 10.1371/journal.pone.0076664. eCollection 2013.

13.

Murine MicroRNA-214 regulates intracellular adhesion molecule (ICAM1) gene expression in genital Chlamydia muridarum infection.

Arkatkar T, Gupta R, Li W, Yu JJ, Wali S, Neal Guentzel M, Chambers JP, Christenson LK, Arulanandam BP.

Immunology. 2015 Aug;145(4):534-42. doi: 10.1111/imm.12470. Epub 2015 Jun 29.

14.

Induction of protective immunity against Chlamydia muridarum intravaginal infection with a chlamydial glycogen phosphorylase.

Li Z, Lu C, Peng B, Zeng H, Zhou Z, Wu Y, Zhong G.

PLoS One. 2012;7(3):e32997. doi: 10.1371/journal.pone.0032997. Epub 2012 Mar 12.

15.

IL-23 induces IL-22 and IL-17 production in response to Chlamydia muridarum genital tract infection, but the absence of these cytokines does not influence disease pathogenesis.

Frazer LC, Scurlock AM, Zurenski MA, Riley MM, Mintus M, Pociask DA, Sullivan JE, Andrews CW Jr, Darville T.

Am J Reprod Immunol. 2013 Dec;70(6):472-84. doi: 10.1111/aji.12171.

16.

Tumor necrosis factor alpha production from CD8+ T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum infection.

Murthy AK, Li W, Chaganty BK, Kamalakaran S, Guentzel MN, Seshu J, Forsthuber TG, Zhong G, Arulanandam BP.

Infect Immun. 2011 Jul;79(7):2928-35. doi: 10.1128/IAI.05022-11. Epub 2011 May 2.

17.

Reduced live organism recovery and lack of hydrosalpinx in mice infected with plasmid-free Chlamydia muridarum.

Lei L, Chen J, Hou S, Ding Y, Yang Z, Zeng H, Baseman J, Zhong G.

Infect Immun. 2014 Mar;82(3):983-92. doi: 10.1128/IAI.01543-13. Epub 2013 Dec 16.

18.

[Role of LIGHT signal pathway in Chlamydia muridarum urogenital infection in mice].

Chen L, Sun Y, Xu S, Fu X, Zhou Z, Lu C, Yang F, Xu G, Wu Y.

Wei Sheng Wu Xue Bao. 2015 Apr 4;55(4):492-500. Chinese.

PMID:
26211324
19.

A novel p40-independent function of IL-12p35 is required for progression and maintenance of herpes stromal keratitis.

Frank GM, Divito SJ, Maker DM, Xu M, Hendricks RL.

Invest Ophthalmol Vis Sci. 2010 Jul;51(7):3591-8. doi: 10.1167/iovs.09-4368. Epub 2010 Mar 5.

20.

Enhanced upper genital tract pathologies by blocking Tim-3 and PD-L1 signaling pathways in mice intravaginally infected with Chlamydia muridarum.

Peng B, Lu C, Tang L, Yeh IT, He Z, Wu Y, Zhong G.

BMC Infect Dis. 2011 Dec 14;11:347. doi: 10.1186/1471-2334-11-347.

Supplemental Content

Support Center