Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 163

1.

Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith-Wiedemann.

Chen Z, Robbins KM, Wells KD, Rivera RM.

Epigenetics. 2013 Jun;8(6):591-601. doi: 10.4161/epi.24655. Epub 2013 May 10.

2.
3.

Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction.

Chen Z, Hagen DE, Elsik CG, Ji T, Morris CJ, Moon LE, Rivera RM.

Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4618-23. doi: 10.1073/pnas.1422088112. Epub 2015 Mar 30.

4.

Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome.

Hori N, Nagai M, Hirayama M, Hirai T, Matsuda K, Hayashi M, Tanaka T, Ozawa T, Horike S.

Anim Reprod Sci. 2010 Dec;122(3-4):303-12. doi: 10.1016/j.anireprosci.2010.09.008. Epub 2010 Oct 7.

PMID:
21035970
5.

Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders.

Soejima H, Higashimoto K.

J Hum Genet. 2013 Jul;58(7):402-9. doi: 10.1038/jhg.2013.51. Epub 2013 May 30. Review.

PMID:
23719190
6.

Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome.

Engel JR, Smallwood A, Harper A, Higgins MJ, Oshimura M, Reik W, Schofield PN, Maher ER.

J Med Genet. 2000 Dec;37(12):921-6.

7.

The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region.

Rossignol S, Steunou V, Chalas C, Kerjean A, Rigolet M, Viegas-Pequignot E, Jouannet P, Le Bouc Y, Gicquel C.

J Med Genet. 2006 Dec;43(12):902-7. Epub 2006 Jul 6.

8.

Imprinting disruption of the CDKN1C/KCNQ1OT1 domain: the molecular mechanisms causing Beckwith-Wiedemann syndrome and cancer.

Higashimoto K, Soejima H, Saito T, Okumura K, Mukai T.

Cytogenet Genome Res. 2006;113(1-4):306-12.

PMID:
16575194
9.

Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith-Wiedemann syndrome.

Diaz-Meyer N, Day CD, Khatod K, Maher ER, Cooper W, Reik W, Junien C, Graham G, Algar E, Der Kaloustian VM, Higgins MJ.

J Med Genet. 2003 Nov;40(11):797-801.

10.

Imprinting status of 11p15 genes in Beckwith-Wiedemann syndrome patients with CDKN1C mutations.

Li M, Squire J, Shuman C, Fei YL, Atkin J, Pauli R, Smith A, Nishikawa J, Chitayat D, Weksberg R.

Genomics. 2001 Jun 15;74(3):370-6. Erratum in: Genomics 2001 Sep;77(1-2):115.

PMID:
11414765
11.

Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation.

Lam WW, Hatada I, Ohishi S, Mukai T, Joyce JA, Cole TR, Donnai D, Reik W, Schofield PN, Maher ER.

J Med Genet. 1999 Jul;36(7):518-23.

12.

High frequency of copy number variations (CNVs) in the chromosome 11p15 region in patients with Beckwith-Wiedemann syndrome.

Baskin B, Choufani S, Chen YA, Shuman C, Parkinson N, Lemyre E, Micheil Innes A, Stavropoulos DJ, Ray PN, Weksberg R.

Hum Genet. 2014 Mar;133(3):321-30. doi: 10.1007/s00439-013-1379-z. Epub 2013 Oct 24.

PMID:
24154661
13.

Blocked transcription through KvDMR1 results in absence of methylation and gene silencing resembling Beckwith-Wiedemann syndrome.

Singh VB, Sribenja S, Wilson KE, Attwood KM, Hillman JC, Pathak S, Higgins MJ.

Development. 2017 May 15;144(10):1820-1830. doi: 10.1242/dev.145136. Epub 2017 Apr 20.

14.

Alternative mechanisms associated with silencing of CDKN1C in Beckwith-Wiedemann syndrome.

Diaz-Meyer N, Yang Y, Sait SN, Maher ER, Higgins MJ.

J Med Genet. 2005 Aug;42(8):648-55.

15.

Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies.

Lim D, Bowdin SC, Tee L, Kirby GA, Blair E, Fryer A, Lam W, Oley C, Cole T, Brueton LA, Reik W, Macdonald F, Maher ER.

Hum Reprod. 2009 Mar;24(3):741-7. doi: 10.1093/humrep/den406. Epub 2008 Dec 10.

PMID:
19073614
16.

Imprinting in clusters: lessons from Beckwith-Wiedemann syndrome.

Reik W, Maher ER.

Trends Genet. 1997 Aug;13(8):330-4. Review.

PMID:
9260520
17.

Epigenotype, genotype, and phenotype analysis of patients in Taiwan with Beckwith-Wiedemann syndrome.

Lin HY, Chuang CK, Tu RY, Fang YY, Su YN, Chen CP, Chang CY, Liu HC, Chu TH, Niu DM, Lin SP.

Mol Genet Metab. 2016 Sep;119(1-2):8-13. doi: 10.1016/j.ymgme.2016.07.003. Epub 2016 Jul 12.

PMID:
27436784
18.

Mutations of the Imprinted CDKN1C Gene as a Cause of the Overgrowth Beckwith-Wiedemann Syndrome: Clinical Spectrum and Functional Characterization.

Brioude F, Netchine I, Praz F, Le Jule M, Calmel C, Lacombe D, Edery P, Catala M, Odent S, Isidor B, Lyonnet S, Sigaudy S, Leheup B, Audebert-Bellanger S, Burglen L, Giuliano F, Alessandri JL, Cormier-Daire V, Laffargue F, Blesson S, Coupier I, Lespinasse J, Blanchet P, Boute O, Baumann C, Polak M, Doray B, Verloes A, Viot G, Le Bouc Y, Rossignol S.

Hum Mutat. 2015 Sep;36(9):894-902. doi: 10.1002/humu.22824. Epub 2015 Aug 6.

PMID:
26077438
19.

Relaxation of insulin-like growth factor 2 imprinting and discordant methylation at KvDMR1 in two first cousins affected by Beckwith-Wiedemann and Klippel-Trenaunay-Weber syndromes.

Sperandeo MP, Ungaro P, Vernucci M, Pedone PV, Cerrato F, Perone L, Casola S, Cubellis MV, Bruni CB, Andria G, Sebastio G, Riccio A.

Am J Hum Genet. 2000 Mar;66(3):841-7.

20.

Renal abnormalities in beckwith-wiedemann syndrome are associated with 11p15.5 uniparental disomy.

Goldman M, Smith A, Shuman C, Caluseriu O, Wei C, Steele L, Ray P, Sadowski P, Squire J, Weksberg R, Rosenblum ND.

J Am Soc Nephrol. 2002 Aug;13(8):2077-84.

Supplemental Content

Support Center