Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 188

1.

Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum.

Chen X, Liu J, Lin G, Wang A, Wang Z, Lu G.

Plant Cell Rep. 2013 Oct;32(10):1589-99. doi: 10.1007/s00299-013-1469-3.

PMID:
23749099
2.

The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi.

Maruyama Y, Yamoto N, Suzuki Y, Chiba Y, Yamazaki K, Sato T, Yamaguchi J.

Plant Sci. 2013 Dec;213:79-87. doi: 10.1016/j.plantsci.2013.08.008.

PMID:
24157210
3.

The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen Sclerotinia sclerotiorum.

Wang C, Yao J, Du X, Zhang Y, Sun Y, Rollins JA, Mou Z.

Plant Physiol. 2015 Sep;169(1):856-72. doi: 10.1104/pp.15.00351.

4.
5.
6.

Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea.

Kravchuk Z, Vicedo B, Flors V, Camañes G, González-Bosch C, García-Agustín P.

J Plant Physiol. 2011 Mar 1;168(4):359-66. doi: 10.1016/j.jplph.2010.07.028.

PMID:
20950893
7.

Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola.

Wang C, Ding Y, Yao J, Zhang Y, Sun Y, Colee J, Mou Z.

Plant J. 2015 Sep;83(6):1019-33. doi: 10.1111/tpj.12946.

8.

Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition.

García-Andrade J, Ramírez V, Flors V, Vera P.

Plant J. 2011 Sep;67(5):783-94. doi: 10.1111/j.1365-313X.2011.04633.x.

9.

ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes.

Catinot J, Huang JB, Huang PY, Tseng MY, Chen YL, Gu SY, Lo WS, Wang LC, Chen YR, Zimmerli L.

Plant Cell Environ. 2015 Dec;38(12):2721-34. doi: 10.1111/pce.12583.

PMID:
26038230
10.

The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants.

La Camera S, L'haridon F, Astier J, Zander M, Abou-Mansour E, Page G, Thurow C, Wendehenne D, Gatz C, Métraux JP, Lamotte O.

Plant J. 2011 Nov;68(3):507-19. doi: 10.1111/j.1365-313X.2011.04706.x.

11.

Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina.

Sánchez-Vallet A, López G, Ramos B, Delgado-Cerezo M, Riviere MP, Llorente F, Fernández PV, Miedes E, Estevez JM, Grant M, Molina A.

Plant Physiol. 2012 Dec;160(4):2109-24. doi: 10.1104/pp.112.200154.

12.

Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi.

Berr A, McCallum EJ, Alioua A, Heintz D, Heitz T, Shen WH.

Plant Physiol. 2010 Nov;154(3):1403-14. doi: 10.1104/pp.110.161497.

13.

Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses.

Zander M, La Camera S, Lamotte O, Métraux JP, Gatz C.

Plant J. 2010 Jan;61(2):200-10. doi: 10.1111/j.1365-313X.2009.04044.x.

14.

Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4.

Schön M, Töller A, Diezel C, Roth C, Westphal L, Wiermer M, Somssich IE.

Mol Plant Microbe Interact. 2013 Jul;26(7):758-67. doi: 10.1094/MPMI-11-12-0265-R.

15.

Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection.

Birkenbihl RP, Diezel C, Somssich IE.

Plant Physiol. 2012 May;159(1):266-85. doi: 10.1104/pp.111.192641.

16.

Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection.

AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T.

Plant J. 2006 Oct;48(1):28-44.

17.

Jasmonate-dependent and COI1-independent defense responses against Sclerotinia sclerotiorum in Arabidopsis thaliana: auxin is part of COI1-independent defense signaling.

Stotz HU, Jikumaru Y, Shimada Y, Sasaki E, Stingl N, Mueller MJ, Kamiya Y.

Plant Cell Physiol. 2011 Nov;52(11):1941-56. doi: 10.1093/pcp/pcr127.

PMID:
21937677
18.

Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea.

Cabot C, Gallego B, Martos S, Barceló J, Poschenrieder C.

Planta. 2013 Jan;237(1):337-49. doi: 10.1007/s00425-012-1779-7.

PMID:
23070523
19.

Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae.

Zheng Z, Mosher SL, Fan B, Klessig DF, Chen Z.

BMC Plant Biol. 2007 Jan 10;7:2.

20.

Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1.

Kawamura Y, Takenaka S, Hase S, Kubota M, Ichinose Y, Kanayama Y, Nakaho K, Klessig DF, Takahashi H.

Plant Cell Physiol. 2009 May;50(5):924-34. doi: 10.1093/pcp/pcp044.

PMID:
19304739

Supplemental Content

Support Center