Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Influence of HbCO structure of the bar-headed goose on photolysis thermodynamics as studied by the nanosecond laser-ultrasonic technique.

Zhao JY, Li JH, Zhang Z, Zhang SY, Qu M, Hua ZQ, Shui XJ, Hua ZC.

Biosci Biotechnol Biochem. 2013;77(6):1251-7.

2.
3.

High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.

Meir JU, Milsom WK.

J Exp Biol. 2013 Jun 15;216(Pt 12):2172-5. doi: 10.1242/jeb.085282.

5.

Adaptation of bird hemoglobins to high altitudes: demonstration of molecular mechanism by protein engineering.

Jessen TH, Weber RE, Fermi G, Tame J, Braunitzer G.

Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6519-22.

6.

[Hemoglobins, XLVII. Hemoglobins of the bar-headed goose (Anser indicus): primary structure and physiology of respiration, systematic and evolution].

Oberth├╝r W, Braunitzer G, W├╝rdinger I.

Hoppe Seylers Z Physiol Chem. 1982 Jun;363(6):581-90. German.

PMID:
7106705
7.

Avian haemoglobins and structural basis of high affinity for oxygen: structure of bar-headed goose aquomet haemoglobin.

Liu XZ, Li SL, Jing H, Liang YH, Hua ZQ, Lu GY.

Acta Crystallogr D Biol Crystallogr. 2001 Jun;57(Pt 6):775-83.

PMID:
11375496
8.

Evolution of muscle phenotype for extreme high altitude flight in the bar-headed goose.

Scott GR, Egginton S, Richards JG, Milsom WK.

Proc Biol Sci. 2009 Oct 22;276(1673):3645-53. doi: 10.1098/rspb.2009.0947.

9.

Have wing morphology or flight kinematics evolved for extreme high altitude migration in the bar-headed goose?

Lee SY, Scott GR, Milsom WK.

Comp Biochem Physiol C Toxicol Pharmacol. 2008 Nov;148(4):324-31. doi: 10.1016/j.cbpc.2008.05.009.

PMID:
18635402
10.

Control of breathing and adaptation to high altitude in the bar-headed goose.

Scott GR, Milsom WK.

Am J Physiol Regul Integr Comp Physiol. 2007 Jul;293(1):R379-91.

11.

Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose.

Scott GR, Schulte PM, Egginton S, Scott AL, Richards JG, Milsom WK.

Mol Biol Evol. 2011 Jan;28(1):351-63. doi: 10.1093/molbev/msq205.

12.

Control of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds.

Scott GR, Richards JG, Milsom WK.

Am J Physiol Regul Integr Comp Physiol. 2009 Oct;297(4):R1066-74. doi: 10.1152/ajpregu.00241.2009.

13.

Mutant hemoglobins (alpha 119-Ala and beta 55-Ser): functions related to high-altitude respiration in geese.

Weber RE, Jessen TH, Malte H, Tame J.

J Appl Physiol (1985). 1993 Dec;75(6):2646-55.

PMID:
8125885
14.

Altitude matters: differences in cardiovascular and respiratory responses to hypoxia in bar-headed geese reared at high and low altitudes.

Lague SL, Chua B, Farrell AP, Wang Y, Milsom WK.

J Exp Biol. 2016 Jul 1;219(Pt 13):1974-84. doi: 10.1242/jeb.132431.

15.

High fliers: the physiology of bar-headed geese.

Butler PJ.

Comp Biochem Physiol A Mol Integr Physiol. 2010 Jul;156(3):325-9. doi: 10.1016/j.cbpa.2010.01.016.

PMID:
20116442
17.

Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl.

Black CP, Tenney SM.

Respir Physiol. 1980 Feb;39(2):217-39.

PMID:
7375742
18.

Body temperature depression and peripheral heat loss accompany the metabolic and ventilatory responses to hypoxia in low and high altitude birds.

Scott GR, Cadena V, Tattersall GJ, Milsom WK.

J Exp Biol. 2008 Apr;211(Pt 8):1326-35. doi: 10.1242/jeb.015958.

19.

The structure of greylag goose oxy haemoglobin: the roles of four mutations compared with bar-headed goose haemoglobin.

Liang YH, Liu XZ, Liu SH, Lu GY.

Acta Crystallogr D Biol Crystallogr. 2001 Dec;57(Pt 12):1850-6.

PMID:
11717498
20.

Maximum running speed of captive bar-headed geese is unaffected by severe hypoxia.

Hawkes LA, Butler PJ, Frappell PB, Meir JU, Milsom WK, Scott GR, Bishop CM.

PLoS One. 2014 Apr 7;9(4):e94015. doi: 10.1371/journal.pone.0094015.

Items per page

Supplemental Content

Support Center