Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Gap junction permeability modulated by dopamine exerts effects on spatial and temporal correlation of retinal ganglion cells' firing activities.

Bu JY, Li H, Gong HQ, Liang PJ, Zhang PM.

J Comput Neurosci. 2014 Feb;36(1):67-79. doi: 10.1007/s10827-013-0469-1. Epub 2013 Jun 10.

PMID:
23748559
2.

Effects of dopamine on response properties of ON-OFF RGCs in encoding stimulus durations.

Xiao L, Zhang PM, Gong HQ, Liang PJ.

Front Neural Circuits. 2014 Jun 30;8:72. doi: 10.3389/fncir.2014.00072. eCollection 2014.

3.

Spatial and temporal correlations of spike trains in frog retinal ganglion cells.

Liu WZ, Jing W, Li H, Gong HQ, Liang PJ.

J Comput Neurosci. 2011 Jun;30(3):543-53. doi: 10.1007/s10827-010-0277-9. Epub 2010 Sep 24.

PMID:
20865311
4.

Stimulus discrimination via responses of retinal ganglion cells and dopamine-dependent modulation.

Li H, Liang PJ.

Neurosci Bull. 2013 Oct;29(5):621-32. doi: 10.1007/s12264-013-1368-1. Epub 2013 Aug 29.

PMID:
23990220
5.

Short- and long-range synchronous activities in dimming detectors of the frog retina.

Ishikane H, Kawana A, Tachibana M.

Vis Neurosci. 1999 Nov-Dec;16(6):1001-14.

PMID:
10614583
6.

Adaptation-dependent synchronous activity contributes to receptive field size change of bullfrog retinal ganglion cell.

Li H, Liu WZ, Liang PJ.

PLoS One. 2012;7(3):e34336. doi: 10.1371/journal.pone.0034336. Epub 2012 Mar 27.

8.

Shifted encoding strategy in retinal luminance adaptation: from firing rate to neural correlation.

Xiao L, Zhang M, Xing D, Liang PJ, Wu S.

J Neurophysiol. 2013 Oct;110(8):1793-803. doi: 10.1152/jn.00221.2013. Epub 2013 Jul 17.

9.

Information transmission rate changes of retinal ganglion cells during contrast adaptation.

Jin X, Chen AH, Gong HQ, Liang PJ.

Brain Res. 2005 Sep 7;1055(1-2):156-64.

PMID:
16099436
10.

Dopamine modulates excitability of basolateral amygdala neurons in vitro.

Kröner S, Rosenkranz JA, Grace AA, Barrionuevo G.

J Neurophysiol. 2005 Mar;93(3):1598-610. Epub 2004 Nov 10.

11.

The structure of large-scale synchronized firing in primate retina.

Shlens J, Field GD, Gauthier JL, Greschner M, Sher A, Litke AM, Chichilnisky EJ.

J Neurosci. 2009 Apr 15;29(15):5022-31. doi: 10.1523/JNEUROSCI.5187-08.2009.

12.

Evidence for dopaminergic innervation on kitten retinal ganglion cells.

Ikeda H, Robbins J, Wakakuwa K.

Brain Res. 1987 Sep;432(1):83-9.

PMID:
3308006
13.
14.

A dopamine- and protein kinase A-dependent mechanism for network adaptation in retinal ganglion cells.

Vaquero CF, Pignatelli A, Partida GJ, Ishida AT.

J Neurosci. 2001 Nov 1;21(21):8624-35.

15.

Response dynamics of bullfrog ON-OFF RGCs to different stimulus durations.

Xiao L, Zhang PM, Wu S, Liang PJ.

J Comput Neurosci. 2014 Aug;37(1):149-60. doi: 10.1007/s10827-013-0492-2. Epub 2014 Jan 4.

PMID:
24390227
16.

Influence of GABAergic inhibition on concerted activity between the ganglion cells.

Jing W, Liu WZ, Gong XW, Gong HQ, Liang PJ.

Neuroreport. 2010 Aug 23;21(12):797-801. doi: 10.1097/WNR.0b013e32833c5b50.

PMID:
20628323
17.

Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex.

Henze DA, González-Burgos GR, Urban NN, Lewis DA, Barrionuevo G.

J Neurophysiol. 2000 Dec;84(6):2799-809.

18.

Dopaminergic modulation of tracer coupling in a ganglion-amacrine cell network.

Mills SL, Xia XB, Hoshi H, Firth SI, Rice ME, Frishman LJ, Marshak DW.

Vis Neurosci. 2007 Jul-Aug;24(4):593-608. Epub 2007 Aug 22.

19.
20.

Supplemental Content

Support Center