Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 161

1.

Design, synthesis, and biological evaluation of novel dipeptide-type SARS-CoV 3CL protease inhibitors: structure-activity relationship study.

Thanigaimalai P, Konno S, Yamamoto T, Koiwai Y, Taguchi A, Takayama K, Yakushiji F, Akaji K, Kiso Y, Kawasaki Y, Chen SE, Naser-Tavakolian A, Schön A, Freire E, Hayashi Y.

Eur J Med Chem. 2013 Jul;65:436-47. doi: 10.1016/j.ejmech.2013.05.005. Epub 2013 May 20.

PMID:
23747811
2.

Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors containing an electrophilic arylketone moiety.

Konno S, Thanigaimalai P, Yamamoto T, Nakada K, Kakiuchi R, Takayama K, Yamazaki Y, Yakushiji F, Akaji K, Kiso Y, Kawasaki Y, Chen SE, Freire E, Hayashi Y.

Bioorg Med Chem. 2013 Jan 15;21(2):412-24. doi: 10.1016/j.bmc.2012.11.017. Epub 2012 Nov 24.

PMID:
23245752
3.

Development of potent dipeptide-type SARS-CoV 3CL protease inhibitors with novel P3 scaffolds: design, synthesis, biological evaluation, and docking studies.

Thanigaimalai P, Konno S, Yamamoto T, Koiwai Y, Taguchi A, Takayama K, Yakushiji F, Akaji K, Chen SE, Naser-Tavakolian A, Schön A, Freire E, Hayashi Y.

Eur J Med Chem. 2013 Oct;68:372-84. doi: 10.1016/j.ejmech.2013.07.037. Epub 2013 Aug 9.

PMID:
23994330
4.

Peptide aldehyde inhibitors challenge the substrate specificity of the SARS-coronavirus main protease.

Zhu L, George S, Schmidt MF, Al-Gharabli SI, Rademann J, Hilgenfeld R.

Antiviral Res. 2011 Nov;92(2):204-12. doi: 10.1016/j.antiviral.2011.08.001. Epub 2011 Aug 11.

PMID:
21854807
5.

Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor.

Yang S, Chen SJ, Hsu MF, Wu JD, Tseng CT, Liu YF, Chen HC, Kuo CW, Wu CS, Chang LW, Chen WC, Liao SY, Chang TY, Hung HH, Shr HL, Liu CY, Huang YA, Chang LY, Hsu JC, Peters CJ, Wang AH, Hsu MC.

J Med Chem. 2006 Aug 10;49(16):4971-80.

PMID:
16884309
6.

Synthesis, docking studies, and evaluation of pyrimidines as inhibitors of SARS-CoV 3CL protease.

Ramajayam R, Tan KP, Liu HG, Liang PH.

Bioorg Med Chem Lett. 2010 Jun 15;20(12):3569-72. doi: 10.1016/j.bmcl.2010.04.118. Epub 2010 May 20.

PMID:
20494577
7.
8.

Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease.

Konno H, Wakabayashi M, Takanuma D, Saito Y, Akaji K.

Bioorg Med Chem. 2016 Mar 15;24(6):1241-54. doi: 10.1016/j.bmc.2016.01.052. Epub 2016 Jan 29.

PMID:
26879854
9.

Discovery of a novel family of SARS-CoV protease inhibitors by virtual screening and 3D-QSAR studies.

Tsai KC, Chen SY, Liang PH, Lu IL, Mahindroo N, Hsieh HP, Chao YS, Liu L, Liu D, Lien W, Lin TH, Wu SY.

J Med Chem. 2006 Jun 15;49(12):3485-95.

PMID:
16759091
10.

Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava.

Park JY, Kim JH, Kwon JM, Kwon HJ, Jeong HJ, Kim YM, Kim D, Lee WS, Ryu YB.

Bioorg Med Chem. 2013 Jul 1;21(13):3730-7. doi: 10.1016/j.bmc.2013.04.026. Epub 2013 Apr 22.

PMID:
23647823
11.

Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features.

Chen L, Li J, Luo C, Liu H, Xu W, Chen G, Liew OW, Zhu W, Puah CM, Shen X, Jiang H.

Bioorg Med Chem. 2006 Dec 15;14(24):8295-306. Epub 2006 Oct 12.

PMID:
17046271
12.

Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition.

Ryu YB, Jeong HJ, Kim JH, Kim YM, Park JY, Kim D, Nguyen TT, Park SJ, Chang JS, Park KH, Rho MC, Lee WS.

Bioorg Med Chem. 2010 Nov 15;18(22):7940-7. doi: 10.1016/j.bmc.2010.09.035. Epub 2010 Sep 19.

PMID:
20934345
13.

Design, synthesis, and evaluation of trifluoromethyl ketones as inhibitors of SARS-CoV 3CL protease.

Shao YM, Yang WB, Kuo TH, Tsai KC, Lin CH, Yang AS, Liang PH, Wong CH.

Bioorg Med Chem. 2008 Apr 15;16(8):4652-60. doi: 10.1016/j.bmc.2008.02.040. Epub 2008 Feb 15.

PMID:
18329272
14.

Screening of drugs by FRET analysis identifies inhibitors of SARS-CoV 3CL protease.

Liu YC, Huang V, Chao TC, Hsiao CD, Lin A, Chang MF, Chow LP.

Biochem Biophys Res Commun. 2005 Jul 22;333(1):194-9.

PMID:
15950190
15.

Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease.

Lu IL, Mahindroo N, Liang PH, Peng YH, Kuo CJ, Tsai KC, Hsieh HP, Chao YS, Wu SY.

J Med Chem. 2006 Aug 24;49(17):5154-61.

PMID:
16913704
16.

A 3D model of SARS_CoV 3CL proteinase and its inhibitors design by virtual screening.

Xiong B, Gui CS, Xu XY, Luo C, Chen J, Luo HB, Chen LL, Li GW, Sun T, Yu CY, Yue LD, Duan WH, Shen JK, Qin L, Shi TL, Li YX, Chen KX, Luo XM, Shen X, Shen JH, Jiang HL.

Acta Pharmacol Sin. 2003 Jun;24(6):497-504.

17.

Molecular docking identifies the binding of 3-chloropyridine moieties specifically to the S1 pocket of SARS-CoV Mpro.

Niu C, Yin J, Zhang J, Vederas JC, James MN.

Bioorg Med Chem. 2008 Jan 1;16(1):293-302. Epub 2007 Sep 22.

PMID:
17931870
18.

Structure-based design and synthesis of highly potent SARS-CoV 3CL protease inhibitors.

Shao YM, Yang WB, Peng HP, Hsu MF, Tsai KC, Kuo TH, Wang AH, Liang PH, Lin CH, Yang AS, Wong CH.

Chembiochem. 2007 Sep 24;8(14):1654-7. No abstract available.

PMID:
17722121
19.

Design and synthesis of cinanserin analogs as severe acute respiratory syndrome coronavirus 3CL protease inhibitors.

Yang Q, Chen L, He X, Gao Z, Shen X, Bai D.

Chem Pharm Bull (Tokyo). 2008 Oct;56(10):1400-5.

20.

Synthesis, modification and docking studies of 5-sulfonyl isatin derivatives as SARS-CoV 3C-like protease inhibitors.

Liu W, Zhu HM, Niu GJ, Shi EZ, Chen J, Sun B, Chen WQ, Zhou HG, Yang C.

Bioorg Med Chem. 2014 Jan 1;22(1):292-302. doi: 10.1016/j.bmc.2013.11.028. Epub 2013 Nov 21.

PMID:
24316352

Supplemental Content

Support Center