Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 122

1.

Carbamazepine as a novel small molecule corrector of trafficking-impaired ATP-sensitive potassium channels identified in congenital hyperinsulinism.

Chen PC, Olson EM, Zhou Q, Kryukova Y, Sampson HM, Thomas DY, Shyng SL.

J Biol Chem. 2013 Jul 19;288(29):20942-54. doi: 10.1074/jbc.M113.470948. Epub 2013 Jun 6.

2.

Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations.

Martin GM, Rex EA, Devaraneni P, Denton JS, Boodhansingh KE, DeLeon DD, Stanley CA, Shyng SL.

J Biol Chem. 2016 Oct 14;291(42):21971-21983. Epub 2016 Aug 29.

3.

Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism.

Lin YW, Bushman JD, Yan FF, Haidar S, MacMullen C, Ganguly A, Stanley CA, Shyng SL.

J Biol Chem. 2008 Apr 4;283(14):9146-56. doi: 10.1074/jbc.M708798200. Epub 2008 Feb 4.

4.

Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations.

Pinney SE, MacMullen C, Becker S, Lin YW, Hanna C, Thornton P, Ganguly A, Shyng SL, Stanley CA.

J Clin Invest. 2008 Aug;118(8):2877-86. doi: 10.1172/JCI35414.

5.

In vitro recovery of ATP-sensitive potassium channels in β-cells from patients with congenital hyperinsulinism of infancy.

Powell PD, Bellanné-Chantelot C, Flanagan SE, Ellard S, Rooman R, Hussain K, Skae M, Clayton P, de Lonlay P, Dunne MJ, Cosgrove KE.

Diabetes. 2011 Apr;60(4):1223-8. doi: 10.2337/db10-1443. Epub 2011 Mar 16.

6.

Sulfonylurea receptor 1 mutations that cause opposite insulin secretion defects with chemical chaperone exposure.

Pratt EB, Yan FF, Gay JW, Stanley CA, Shyng SL.

J Biol Chem. 2009 Mar 20;284(12):7951-9. doi: 10.1074/jbc.M807012200. Epub 2009 Jan 16.

7.

Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue.

Yan FF, Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL.

Diabetes. 2007 Sep;56(9):2339-48. Epub 2007 Jun 15.

8.

Identification of a familial hyperinsulinism-causing mutation in the sulfonylurea receptor 1 that prevents normal trafficking and function of KATP channels.

Taschenberger G, Mougey A, Shen S, Lester LB, LaFranchi S, Shyng SL.

J Biol Chem. 2002 May 10;277(19):17139-46. Epub 2002 Feb 26.

9.

A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of beta-cell ATP-sensitive potassium channels.

Lin YW, MacMullen C, Ganguly A, Stanley CA, Shyng SL.

J Biol Chem. 2006 Feb 3;281(5):3006-12. Epub 2005 Dec 6.

10.

Role of Hsp90 in biogenesis of the beta-cell ATP-sensitive potassium channel complex.

Yan FF, Pratt EB, Chen PC, Wang F, Skach WR, David LL, Shyng SL.

Mol Biol Cell. 2010 Jun 15;21(12):1945-54. doi: 10.1091/mbc.E10-02-0116. Epub 2010 Apr 28.

11.

Phosphatidylinositol 4,5-biphosphate (PIP2) modulates interaction of syntaxin-1A with sulfonylurea receptor 1 to regulate pancreatic β-cell ATP-sensitive potassium channels.

Liang T, Xie L, Chao C, Kang Y, Lin X, Qin T, Xie H, Feng ZP, Gaisano HY.

J Biol Chem. 2014 Feb 28;289(9):6028-40. doi: 10.1074/jbc.M113.511808. Epub 2014 Jan 15.

12.

Molecular biology of adenosine triphosphate-sensitive potassium channels.

Aguilar-Bryan L, Bryan J.

Endocr Rev. 1999 Apr;20(2):101-35. Review.

PMID:
10204114
13.

Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels.

Martin GM, Chen PC, Devaraneni P, Shyng SL.

Front Physiol. 2013 Dec 24;4:386. doi: 10.3389/fphys.2013.00386. Review.

14.

Engineered Kir6.2 mutations that correct the trafficking defect of K(ATP) channels caused by specific SUR1 mutations.

Zhou Q, Pratt EB, Shyng SL.

Channels (Austin). 2013 Jul-Aug;7(4):313-7. Epub 2013 May 21.

15.

Effects of ZD0947, a novel and potent ATP-sensitive K+ channel opener, on smooth muscle-type ATP-sensitive K+ channels.

Mori K, Yamashita Y, Teramoto N.

Eur J Pharmacol. 2016 Nov 15;791:773-779. doi: 10.1016/j.ejphar.2016.09.038. Epub 2016 Sep 29.

PMID:
27693800
16.

Carbamazepine inhibits ATP-sensitive potassium channel activity by disrupting channel response to MgADP.

Zhou Q, Chen PC, Devaraneni PK, Martin GM, Olson EM, Shyng SL.

Channels (Austin). 2014;8(4):376-82.

17.
18.

Neonatal diabetes caused by mutations in sulfonylurea receptor 1: interplay between expression and Mg-nucleotide gating defects of ATP-sensitive potassium channels.

Zhou Q, Garin I, Castaño L, Argente J, Muñoz-Calvo MT, Perez de Nanclares G, Shyng SL.

J Clin Endocrinol Metab. 2010 Dec;95(12):E473-8. doi: 10.1210/jc.2010-1231. Epub 2010 Sep 1.

19.

Nitric oxide activates ATP-sensitive potassium channels in mammalian sensory neurons: action by direct S-nitrosylation.

Kawano T, Zoga V, Kimura M, Liang MY, Wu HE, Gemes G, McCallum JB, Kwok WM, Hogan QH, Sarantopoulos CD.

Mol Pain. 2009 Mar 14;5:12. doi: 10.1186/1744-8069-5-12.

20.

Sulfonylureas correct trafficking defects of ATP-sensitive potassium channels caused by mutations in the sulfonylurea receptor.

Yan F, Lin CW, Weisiger E, Cartier EA, Taschenberger G, Shyng SL.

J Biol Chem. 2004 Mar 19;279(12):11096-105. Epub 2004 Jan 5.

Supplemental Content

Support Center