Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 159

1.

Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption.

Guo C, Yin S, Yu H, Liu S, Dong Q, Goto T, Zhang Z, Li Y, Sato T.

Nanoscale. 2013 Jul 21;5(14):6469-78. doi: 10.1039/c3nr01025b. Epub 2013 Jun 7.

PMID:
23743996
2.

Na0.3WO3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells.

Zhang Y, Li B, Cao Y, Qin J, Peng Z, Xiao Z, Huang X, Zou R, Hu J.

Dalton Trans. 2015 Feb 14;44(6):2771-9. doi: 10.1039/c4dt02927e.

PMID:
25468402
3.

Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells.

Li B, Wang Q, Zou R, Liu X, Xu K, Li W, Hu J.

Nanoscale. 2014 Mar 21;6(6):3274-82. doi: 10.1039/c3nr06242b. Epub 2014 Feb 7.

PMID:
24509646
4.

Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy.

Tsai MF, Chang SH, Cheng FY, Shanmugam V, Cheng YS, Su CH, Yeh CS.

ACS Nano. 2013 Jun 25;7(6):5330-42. doi: 10.1021/nn401187c. Epub 2013 May 10.

PMID:
23651267
5.

Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo.

Chen Z, Wang Q, Wang H, Zhang L, Song G, Song L, Hu J, Wang H, Liu J, Zhu M, Zhao D.

Adv Mater. 2013 Apr 11;25(14):2095-100. doi: 10.1002/adma.201204616. Epub 2013 Feb 21.

PMID:
23427112
6.

Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser.

Li B, Zhang Y, Zou R, Wang Q, Zhang B, An L, Yin F, Hua Y, Hu J.

Dalton Trans. 2014 Apr 28;43(16):6244-50. doi: 10.1039/c3dt53396d.

PMID:
24598863
7.

Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo.

Tian Q, Jiang F, Zou R, Liu Q, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J.

ACS Nano. 2011 Dec 27;5(12):9761-71. doi: 10.1021/nn203293t. Epub 2011 Nov 15.

PMID:
22059851
8.

In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe.

Liu J, Han J, Kang Z, Golamaully R, Xu N, Li H, Han X.

Nanoscale. 2014 Jun 7;6(11):5770-6. doi: 10.1039/c3nr06292a. Epub 2014 Apr 16.

PMID:
24736832
9.

Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent.

Guo C, Yu H, Feng B, Gao W, Yan M, Zhang Z, Li Y, Liu S.

Biomaterials. 2015 Jun;52:407-16. doi: 10.1016/j.biomaterials.2015.02.054. Epub 2015 Mar 18.

PMID:
25818447
10.

Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy.

Zhou Z, Kong B, Yu C, Shi X, Wang M, Liu W, Sun Y, Zhang Y, Yang H, Yang S.

Sci Rep. 2014 Jan 13;4:3653. doi: 10.1038/srep03653.

11.

Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells.

Xiao JW, Fan SX, Wang F, Sun LD, Zheng XY, Yan CH.

Nanoscale. 2014 Apr 21;6(8):4345-51. doi: 10.1039/c3nr06843a.

PMID:
24622916
12.

12P-conjugated PEG-modified gold nanorods combined with near-infrared laser for tumor targeting and photothermal therapy.

Zhan T, Li P, Bi S, Dong B, Song H, Ren H, Wang L.

J Nanosci Nanotechnol. 2012 Sep;12(9):7198-205.

PMID:
23035452
13.

The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells.

Mehdizadeh A, Pandesh S, Shakeri-Zadeh A, Kamrava SK, Habib-Agahi M, Farhadi M, Pishghadam M, Ahmadi A, Arami S, Fedutik Y.

Lasers Med Sci. 2014 May;29(3):939-48. doi: 10.1007/s10103-013-1414-2. Epub 2013 Sep 7.

PMID:
24013622
14.

Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release.

You J, Zhang R, Zhang G, Zhong M, Liu Y, Van Pelt CS, Liang D, Wei W, Sood AK, Li C.

J Control Release. 2012 Mar 10;158(2):319-28. doi: 10.1016/j.jconrel.2011.10.028. Epub 2011 Oct 28.

15.

Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal cancer therapy.

Liu X, Huang N, Li H, Wang H, Jin Q, Ji J.

ACS Appl Mater Interfaces. 2014 Apr 23;6(8):5657-68. doi: 10.1021/am5001823. Epub 2014 Apr 10.

PMID:
24673744
16.

Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application.

Yamashita S, Fukushima H, Akiyama Y, Niidome Y, Mori T, Katayama Y, Niidome T.

Bioorg Med Chem. 2011 Apr 1;19(7):2130-5. doi: 10.1016/j.bmc.2011.02.042. Epub 2011 Mar 21.

PMID:
21421321
17.

Multifunctional Rbx WO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging.

Tian G, Zhang X, Zheng X, Yin W, Ruan L, Liu X, Zhou L, Yan L, Li S, Gu Z, Zhao Y.

Small. 2014 Oct 29;10(20):4160-70. doi: 10.1002/smll.201401237. Epub 2014 Jun 30.

PMID:
24979184
18.

Discovery of an excellent IR absorbent with a broad working waveband: Cs(x)WO3 nanorods.

Guo C, Yin S, Huang L, Yang L, Sato T.

Chem Commun (Camb). 2011 Aug 21;47(31):8853-5. doi: 10.1039/c1cc12711j. Epub 2011 Jul 11.

PMID:
21748146
19.

An overview of synthetic strategies and current applications of gold nanorods in cancer treatment.

Lakhani PM, Rompicharla SV, Ghosh B, Biswas S.

Nanotechnology. 2015 Oct 30;26(43):432001. doi: 10.1088/0957-4484/26/43/432001. Epub 2015 Oct 8. Review.

PMID:
26446935
20.

Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy.

Chen M, Fang X, Tang S, Zheng N.

Chem Commun (Camb). 2012 Sep 14;48(71):8934-6. doi: 10.1039/c2cc34463g. Epub 2012 Jul 31.

PMID:
22847451

Supplemental Content

Support Center