Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 140

1.
2.

Shape dependence of support for NOx storage and reduction catalysts.

Xie W, Yu Y, He H.

J Environ Sci (China). 2019 Jan;75:396-407. doi: 10.1016/j.jes.2018.06.013. Epub 2018 Jun 28.

PMID:
30473305
3.

A versatile in situ spectroscopic cell for fluorescence/transmission EXAFS and X-ray diffraction of heterogeneous catalysts in gas and liquid phase.

Hannemann S, Casapu M, Grunwaldt JD, Haider P, Trüssel P, Baiker A, Welter E.

J Synchrotron Radiat. 2007 Jul;14(Pt 4):345-54. Epub 2007 Jun 14.

PMID:
17587660
4.

Influence of Mono- and Bimetallic PtOx, PdOx, PtPdOx Clusters on CO Sensing by SnO₂ Based Gas Sensors.

Kutukov P, Rumyantseva M, Krivetskiy V, Filatova D, Batuk M, Hadermann J, Khmelevsky N, Aksenenko A, Gaskov A.

Nanomaterials (Basel). 2018 Nov 7;8(11). pii: E917. doi: 10.3390/nano8110917.

5.

Sulfation and Desulfation Behavior of Pt-BaO/MgO-Al2O3 NOx Storage Reduction Catalyst.

Jeong S, Kim do H.

J Nanosci Nanotechnol. 2016 May;16(5):4411-6.

PMID:
27483765
6.

Structural characterization of alumina-supported Rh catalysts: effects of ceriation and zirconiation by using metal-organic precursors.

Kroner AB, Newton MA, Tromp M, Russell AE, Dent AJ, Evans J.

Chemphyschem. 2013 Oct 21;14(15):3606-17. doi: 10.1002/cphc.201300537. Epub 2013 Aug 13.

7.

Characterization of platinum-iron catalysts supported on MCM-41 synthesized with rice husk silica and their performance for phenol hydroxylation.

Chumee J, Grisdanurak N, Neramittagapong A, Wittayakun J.

Sci Technol Adv Mater. 2009 Mar 4;10(1):015006. eCollection 2009 Feb.

8.

Time-resolved, in situ DRIFTS/EDE/MS studies on alumina-supported rhodium catalysts: effects of ceriation and zirconiation on rhodium-CO interactions.

Kroner AB, Newton MA, Tromp M, Roscioni OM, Russell AE, Dent AJ, Prestipino C, Evans J.

Chemphyschem. 2014 Oct 6;15(14):3049-59. doi: 10.1002/cphc.201402122. Epub 2014 Jul 18.

9.

Interaction of NO2 with model NSR catalysts: metal-oxide interaction controls initial NOx storage mechanism.

Desikusumastuti A, Staudt T, Qin Z, Happel M, Laurin M, Lykhach Y, Shaikhutdinov S, Rohr F, Libuda J.

Chemphyschem. 2008 Oct 24;9(15):2191-7. doi: 10.1002/cphc.200800550.

PMID:
18846595
10.

Noble metal ionic catalysts.

Hegde MS, Madras G, Patil KC.

Acc Chem Res. 2009 Jun 16;42(6):704-12. doi: 10.1021/ar800209s.

PMID:
19425544
11.

A comparative study on the NOx storage and reduction performance of Pt/Ni1Mg2Al1Ox and Pt/Mn1Mg2Al1Ox catalysts.

Zhang C, Gao Y, Altaf N, Wang Q.

Dalton Trans. 2019 Nov 12. doi: 10.1039/c9dt03787j. [Epub ahead of print]

PMID:
31713566
12.

Influence of Co or Ce addition on the NOx storage and sulfur-resistance performance of the lean-burn NOx trap catalyst Pt/K/TiO2-ZrO2.

Zou ZQ, Meng M, Tsubaki N, He JJ, Wang G, Li XG, Zhou XY.

J Hazard Mater. 2009 Oct 15;170(1):118-26. doi: 10.1016/j.jhazmat.2009.04.125. Epub 2009 May 5.

PMID:
19473760
13.

Combining nonthermal plasma with perovskite-like catalyst for NOx storage and reduction.

Peng HH, Pan KL, Yu SJ, Yan SY, Chang MB.

Environ Sci Pollut Res Int. 2016 Oct;23(19):19590-601. doi: 10.1007/s11356-016-7114-2. Epub 2016 Jul 8.

PMID:
27392625
14.

NO reduction by CO over Rh/Al2O3 and Rh/AlPO4 catalysts: Metal-support interaction and thermal aging.

Li M, Wu X, Cao Y, Liu S, Weng D, Ran R.

J Colloid Interface Sci. 2013 Oct 15;408:157-63. doi: 10.1016/j.jcis.2013.07.023. Epub 2013 Jul 19.

PMID:
23928486
15.

Effects of synthesis methods on the performance of Pt + Rh/Ce0.6Zr0.4O2 three-way catalysts.

Zhan Z, Song L, Liu X, Jiao J, Li J, He H.

J Environ Sci (China). 2014 Mar 1;26(3):683-93. doi: 10.1016/S1001-0742(13)60444-1.

PMID:
25079282
16.

NOx Oxidation and Storage Properties of a Ruddlesden-Popper-Type Sr3Fe2O7-δ-Layered Perovskite Catalyst.

Tamai K, Hosokawa S, Okamoto H, Asakura H, Teramura K, Tanaka T.

ACS Appl Mater Interfaces. 2019 Jul 31;11(30):26985-26993. doi: 10.1021/acsami.9b08139. Epub 2019 Jul 15.

PMID:
31262168
17.

Effect of pretreatment conditions on particle size of bimetallic pt-au catalysts supported on ZnO/Al2O3 and its activity for toluene oxidation.

Kim KJ, Kang SJ, Chung MC, Jung SC, Jeong WJ, Park GC, Kim SC, Boo SI, Jeong SW, Ahn HG.

J Nanosci Nanotechnol. 2010 Sep;10(9):5869-73.

PMID:
21133118
18.

Synthesis of Pt/K2CO3/MgAlOx-reduced graphene oxide hybrids as promising NOx storage-reduction catalysts with superior catalytic performance.

Mei X, Yan Q, Lu P, Wang J, Cui Y, Nie Y, Umar A, Wang Q.

Sci Rep. 2017 Feb 16;7:42862. doi: 10.1038/srep42862.

19.

Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions.

Tao F, Grass ME, Zhang Y, Butcher DR, Aksoy F, Aloni S, Altoe V, Alayoglu S, Renzas JR, Tsung CK, Zhu Z, Liu Z, Salmeron M, Somorjai GA.

J Am Chem Soc. 2010 Jun 30;132(25):8697-703. doi: 10.1021/ja101502t.

PMID:
20521788
20.

Surface Tuning of La0.5Sr0.5CoO3 Perovskite Catalysts by Acetic Acid for NOx Storage and Reduction.

Peng Y, Si W, Luo J, Su W, Chang H, Li J, Hao J, Crittenden J.

Environ Sci Technol. 2016 Jun 21;50(12):6442-8. doi: 10.1021/acs.est.6b00110. Epub 2016 Jun 3.

PMID:
27233105

Supplemental Content

Support Center