Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 82

1.

Knockdown of the cochaperone SGTA results in the suppression of androgen and PI3K/Akt signaling and inhibition of prostate cancer cell proliferation.

Trotta AP, Need EF, Selth LA, Chopra S, Pinnock CB, Leach DA, Coetzee GA, Butler LM, Tilley WD, Buchanan G.

Int J Cancer. 2013 Dec 15;133(12):2812-23. doi: 10.1002/ijc.28310. Epub 2013 Jul 6.

2.

The cochaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) demonstrates regulatory specificity for the androgen, glucocorticoid, and progesterone receptors.

Paul A, Garcia YA, Zierer B, Patwardhan C, Gutierrez O, Hildenbrand Z, Harris DC, Balsiger HA, Sivils JC, Johnson JL, Buchner J, Chadli A, Cox MB.

J Biol Chem. 2014 May 30;289(22):15297-308. doi: 10.1074/jbc.M113.535229. Epub 2014 Apr 21.

3.

Molecular cloning of canine co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) and investigation of its ability to suppress androgen receptor signalling in androgen-independent prostate cancer.

Kato Y, Ochiai K, Michishita M, Azakami D, Nakahira R, Morimatsu M, Ishiguro-Oonuma T, Yoshikawa Y, Kobayashi M, Bonkobara M, Kobayashi M, Takahashi K, Watanabe M, Omi T.

Vet J. 2015 Nov;206(2):143-8. doi: 10.1016/j.tvjl.2015.08.002. Epub 2015 Aug 7.

PMID:
26346258
4.

Subdomain structure of the co-chaperone SGTA and activity of its androgen receptor client.

Trotta AP, Need EF, Butler LM, Selth LA, O'Loughlin MA, Coetzee GA, Tilley WD, Buchanan G.

J Mol Endocrinol. 2012 Jul 25;49(2):57-68. Print 2012 Oct.

PMID:
22693264
5.

PI3K-AKT-mTOR pathway is dominant over androgen receptor signaling in prostate cancer cells.

Kaarbø M, Mikkelsen OL, Malerød L, Qu S, Lobert VH, Akgul G, Halvorsen T, Maelandsmo GM, Saatcioglu F.

Cell Oncol. 2010;32(1-2):11-27. doi: 10.3233/CLO-2009-0487.

6.

Canine REIC/Dkk-3 interacts with SGTA and restores androgen receptor signalling in androgen-independent prostate cancer cell lines.

Kato Y, Ochiai K, Kawakami S, Nakao N, Azakami D, Bonkobara M, Michishita M, Morimatsu M, Watanabe M, Omi T.

BMC Vet Res. 2017 Jun 9;13(1):170. doi: 10.1186/s12917-017-1094-4.

8.

Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha.

Buchanan G, Ricciardelli C, Harris JM, Prescott J, Yu ZC, Jia L, Butler LM, Marshall VR, Scher HI, Gerald WL, Coetzee GA, Tilley WD.

Cancer Res. 2007 Oct 15;67(20):10087-96.

9.

Tumor suppressor REIC/DKK-3 and co-chaperone SGTA: Their interaction and roles in the androgen sensitivity.

Ochiai K, Morimatsu M, Kato Y, Ishiguro-Oonuma T, Udagawa C, Rungsuriyawiboon O, Azakami D, Michishita M, Ariyoshi Y, Ueki H, Nasu Y, Kumon H, Watanabe M, Omi T.

Oncotarget. 2016 Jan 19;7(3):3283-96. doi: 10.18632/oncotarget.6488.

10.

Identification of novel androgen receptor target genes in prostate cancer.

Jariwala U, Prescott J, Jia L, Barski A, Pregizer S, Cogan JP, Arasheben A, Tilley WD, Scher HI, Gerald WL, Buchanan G, Coetzee GA, Frenkel B.

Mol Cancer. 2007 Jun 6;6:39.

12.

Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interactions of Foxo1 with androgen receptor.

Fan W, Yanase T, Morinaga H, Okabe T, Nomura M, Daitoku H, Fukamizu A, Kato S, Takayanagi R, Nawata H.

J Biol Chem. 2007 Mar 9;282(10):7329-38. Epub 2007 Jan 2.

13.

Androgen-induced Wnt signaling in preosteoblasts promotes the growth of MDA-PCa-2b human prostate cancer cells.

Liu XH, Kirschenbaum A, Yao S, Liu G, Aaronson SA, Levine AC.

Cancer Res. 2007 Jun 15;67(12):5747-53.

14.

Small glutamine-rich tetratricopeptide repeat-containing protein alpha is present in human ovaries but may not be differentially expressed in relation to polycystic ovary syndrome.

Butler MS, Yang X, Ricciardelli C, Liang X, Norman RJ, Tilley WD, Hickey TE.

Fertil Steril. 2013 Jun;99(7):2076-83.e1. doi: 10.1016/j.fertnstert.2013.01.140. Epub 2013 Feb 20.

PMID:
23433514
15.

Androgen receptor protein levels are significantly reduced in serous ovarian carcinomas compared with benign or borderline disease but are not altered by cancer stage or metastatic progression.

Butler MS, Ricciardelli C, Tilley WD, Hickey TE.

Horm Cancer. 2013 Jun;4(3):154-64. doi: 10.1007/s12672-013-0135-0. Epub 2013 Feb 27.

PMID:
23443946
16.

Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence.

Unni E, Sun S, Nan B, McPhaul MJ, Cheskis B, Mancini MA, Marcelli M.

Cancer Res. 2004 Oct 1;64(19):7156-68.

17.

Targeting the Vav3 oncogene enhances docetaxel-induced apoptosis through the inhibition of androgen receptor phosphorylation in LNCaP prostate cancer cells under chronic hypoxia.

Nomura T, Yamasaki M, Hirai K, Inoue T, Sato R, Matsuura K, Moriyama M, Sato F, Mimata H.

Mol Cancer. 2013 Apr 8;12:27. doi: 10.1186/1476-4598-12-27.

18.

Androgen receptor (AR) expression in AR-negative prostate cancer cells results in differential effects of DHT and IGF-I on proliferation and AR activity between localized and metastatic tumors.

Plymate SR, Tennant MK, Culp SH, Woodke L, Marcelli M, Colman I, Nelson PS, Carroll JM, Roberts CT Jr, Ware JL.

Prostate. 2004 Nov 1;61(3):276-90.

PMID:
15368471
19.

Dihydrotestosterone differentially modulates the mitogen-activated protein kinase and the phosphoinositide 3-kinase/Akt pathways through the nuclear and novel membrane androgen receptor in C6 cells.

Gatson JW, Kaur P, Singh M.

Endocrinology. 2006 Apr;147(4):2028-34. Epub 2006 Jan 12. Erratum in: Endocrinology. 2008 Jan;149(1):366.

PMID:
16410299
20.

Requirement for NF-(kappa)B in interleukin-4-induced androgen receptor activation in prostate cancer cells.

Lee SO, Lou W, Nadiminty N, Lin X, Gao AC.

Prostate. 2005 Jul 1;64(2):160-7.

PMID:
15678501

Supplemental Content

Support Center