Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Scavenger receptor A modulates the immune response to pulmonary Cryptococcus neoformans infection.

Qiu Y, Dayrit JK, Davis MJ, Carolan JF, Osterholzer JJ, Curtis JL, Olszewski MA.

J Immunol. 2013 Jul 1;191(1):238-48. doi: 10.4049/jimmunol.1203435. Epub 2013 Jun 3.

2.

The role of macrophage inflammatory protein-1 alpha/CCL3 in regulation of T cell-mediated immunity to Cryptococcus neoformans infection.

Olszewski MA, Huffnagle GB, McDonald RA, Lindell DM, Moore BB, Cook DN, Toews GB.

J Immunol. 2000 Dec 1;165(11):6429-36.

3.

Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment, activation, and gamma interferon production.

Murdock BJ, Huffnagle GB, Olszewski MA, Osterholzer JJ.

Infect Immun. 2014 Mar;82(3):937-48. doi: 10.1128/IAI.01477-13. Epub 2013 Dec 9.

4.

STAT1 signaling is essential for protection against Cryptococcus neoformans infection in mice.

Leopold Wager CM, Hole CR, Wozniak KL, Olszewski MA, Wormley FL Jr.

J Immunol. 2014 Oct 15;193(8):4060-71. doi: 10.4049/jimmunol.1400318. Epub 2014 Sep 8.

5.

Insights into the mechanisms of protective immunity against Cryptococcus neoformans infection using a mouse model of pulmonary cryptococcosis.

Wozniak KL, Ravi S, Macias S, Young ML, Olszewski MA, Steele C, Wormley FL.

PLoS One. 2009 Sep 3;4(9):e6854. doi: 10.1371/journal.pone.0006854.

6.

Th2 but not Th1 immune bias results in altered lung functions in a murine model of pulmonary Cryptococcus neoformans infection.

Jain AV, Zhang Y, Fields WB, McNamara DA, Choe MY, Chen GH, Erb-Downward J, Osterholzer JJ, Toews GB, Huffnagle GB, Olszewski MA.

Infect Immun. 2009 Dec;77(12):5389-99. doi: 10.1128/IAI.00809-09. Epub 2009 Sep 14.

7.

Stimulation via Toll-like receptor 9 reduces Cryptococcus neoformans-induced pulmonary inflammation in an IL-12-dependent manner.

Edwards L, Williams AE, Krieg AM, Rae AJ, Snelgrove RJ, Hussell T.

Eur J Immunol. 2005 Jan;35(1):273-81.

8.

DAP12 Inhibits Pulmonary Immune Responses to Cryptococcus neoformans.

Heung LJ, Hohl TM.

Infect Immun. 2016 May 24;84(6):1879-86. doi: 10.1128/IAI.00222-16. Print 2016 Jun.

9.

Cryptococcal heat shock protein 70 homolog Ssa1 contributes to pulmonary expansion of Cryptococcus neoformans during the afferent phase of the immune response by promoting macrophage M2 polarization.

Eastman AJ, He X, Qiu Y, Davis MJ, Vedula P, Lyons DM, Park YD, Hardison SE, Malachowski AN, Osterholzer JJ, Wormley FL Jr, Williamson PR, Olszewski MA.

J Immunol. 2015 Jun 15;194(12):5999-6010. doi: 10.4049/jimmunol.1402719. Epub 2015 May 13.

10.

Dectin-2 deficiency promotes Th2 response and mucin production in the lungs after pulmonary infection with Cryptococcus neoformans.

Nakamura Y, Sato K, Yamamoto H, Matsumura K, Matsumoto I, Nomura T, Miyasaka T, Ishii K, Kanno E, Tachi M, Yamasaki S, Saijo S, Iwakura Y, Kawakami K.

Infect Immun. 2015 Feb;83(2):671-81. doi: 10.1128/IAI.02835-14. Epub 2014 Nov 24.

11.

Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation.

Hardison SE, Herrera G, Young ML, Hole CR, Wozniak KL, Wormley FL Jr.

J Immunol. 2012 Oct 15;189(8):4060-8. doi: 10.4049/jimmunol.1103455. Epub 2012 Sep 14.

12.

Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection.

Hardison SE, Wozniak KL, Kolls JK, Wormley FL Jr.

Infect Immun. 2010 Dec;78(12):5341-51. doi: 10.1128/IAI.00845-10. Epub 2010 Oct 4.

13.

Exploitation of Scavenger Receptor, Macrophage Receptor with Collagenous Structure, by Cryptococcus neoformans Promotes Alternative Activation of Pulmonary Lymph Node CD11b+ Conventional Dendritic Cells and Non-Protective Th2 Bias.

Xu J, Flaczyk A, Neal LM, Fa Z, Cheng D, Ivey M, Moore BB, Curtis JL, Osterholzer JJ, Olszewski MA.

Front Immunol. 2017 Sep 28;8:1231. doi: 10.3389/fimmu.2017.01231. eCollection 2017.

14.

Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection.

Xu J, Eastman AJ, Flaczyk A, Neal LM, Zhao G, Carolan J, Malachowski AN, Stolberg VR, Yosri M, Chensue SW, Curtis JL, Osterholzer JJ, Olszewski MA.

MBio. 2016 Jul 12;7(4). pii: e00510-16. doi: 10.1128/mBio.00510-16. Erratum in: MBio. 2018 May 29;9(3):.

15.

Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection.

Eastman AJ, Osterholzer JJ, Olszewski MA.

Future Microbiol. 2015;10(11):1837-57. doi: 10.2217/fmb.15.92. Review.

16.
17.
18.
19.

In vivo role of dendritic cells in a murine model of pulmonary cryptococcosis.

Wozniak KL, Vyas JM, Levitz SM.

Infect Immun. 2006 Jul;74(7):3817-24.

20.

Inheritance of immune polarization patterns is linked to resistance versus susceptibility to Cryptococcus neoformans in a mouse model.

Chen GH, McNamara DA, Hernandez Y, Huffnagle GB, Toews GB, Olszewski MA.

Infect Immun. 2008 Jun;76(6):2379-91. doi: 10.1128/IAI.01143-07. Epub 2008 Apr 7.

Supplemental Content

Support Center