Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 80

1.

Eccentric contractions increase the phosphorylation of tuberous sclerosis complex-2 (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome.

Jacobs BL, You JS, Frey JW, Goodman CA, Gundermann DM, Hornberger TA.

J Physiol. 2013 Sep 15;591(18):4611-20. doi: 10.1113/jphysiol.2013.256339. Epub 2013 Jun 3.

2.

Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling.

Jacobs BL, McNally RM, Kim KJ, Blanco R, Privett RE, You JS, Hornberger TA.

J Biol Chem. 2017 Apr 28;292(17):6987-6997. doi: 10.1074/jbc.M117.777805. Epub 2017 Mar 13.

PMID:
28289099
3.
4.

Tuberous sclerosis-2 (TSC2) regulates the stability of death-associated protein kinase-1 (DAPK) through a lysosome-dependent degradation pathway.

Lin Y, Henderson P, Pettersson S, Satsangi J, Hupp T, Stevens C.

FEBS J. 2011 Jan;278(2):354-70. doi: 10.1111/j.1742-4658.2010.07959.x. Epub 2010 Dec 6.

5.

REDD2 is enriched in skeletal muscle and inhibits mTOR signaling in response to leucine and stretch.

Miyazaki M, Esser KA.

Am J Physiol Cell Physiol. 2009 Mar;296(3):C583-92. doi: 10.1152/ajpcell.00464.2008. Epub 2009 Jan 7.

6.

Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle.

Joassard OR, Amirouche A, Gallot YS, Desgeorges MM, Castells J, Durieux AC, Berthon P, Freyssenet DG.

Int J Biochem Cell Biol. 2013 Nov;45(11):2444-55. doi: 10.1016/j.biocel.2013.07.019. Epub 2013 Aug 2.

PMID:
23916784
7.

Nucleocytoplasmic localization of p70 S6K1, but not of its isoforms p85 and p31, is regulated by TSC2/mTOR.

Rosner M, Hengstschläger M.

Oncogene. 2011 Nov 3;30(44):4509-22. doi: 10.1038/onc.2011.165. Epub 2011 May 23.

PMID:
21602892
9.

Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling.

Miyazaki M, McCarthy JJ, Fedele MJ, Esser KA.

J Physiol. 2011 Apr 1;589(Pt 7):1831-46. doi: 10.1113/jphysiol.2011.205658. Epub 2011 Feb 7.

10.

Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity.

Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N.

J Biol Chem. 2005 Sep 16;280(37):32081-9. Epub 2005 Jul 15.

11.

mTOR Hyperactivation by Ablation of Tuberous Sclerosis Complex 2 in the Mouse Heart Induces Cardiac Dysfunction with the Increased Number of Small Mitochondria Mediated through the Down-Regulation of Autophagy.

Taneike M, Nishida K, Omiya S, Zarrinpashneh E, Misaka T, Kitazume-Taneike R, Austin R, Takaoka M, Yamaguchi O, Gambello MJ, Shah AM, Otsu K.

PLoS One. 2016 Mar 29;11(3):e0152628. doi: 10.1371/journal.pone.0152628. eCollection 2016.

12.

Carboxy terminal tail of polycystin-1 regulates localization of TSC2 to repress mTOR.

Dere R, Wilson PD, Sandford RN, Walker CL.

PLoS One. 2010 Feb 16;5(2):e9239. doi: 10.1371/journal.pone.0009239.

13.

Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression.

Morales CR, Li DL, Pedrozo Z, May HI, Jiang N, Kyrychenko V, Cho GW, Kim SY, Wang ZV, Rotter D, Rothermel BA, Schneider JW, Lavandero S, Gillette TG, Hill JA.

Sci Signal. 2016 Apr 5;9(422):ra34. doi: 10.1126/scisignal.aad5736.

14.

Tuberous-sclerosis complex-related cell signaling in the pathogenesis of lung cancer.

Fuchs A, König K, Heukamp LC, Fassunke J, Kirfel J, Huss S, Becker AJ, Büttner R, Majores M.

Diagn Pathol. 2014 Mar 4;9:48. doi: 10.1186/1746-1596-9-48.

15.

Renal tumours in a Tsc2(+/-) mouse model do not show feedback inhibition of Akt and are effectively prevented by rapamycin.

Yang J, Kalogerou M, Samsel PA, Zhang Y, Griffiths DF, Gallacher J, Sampson JR, Shen MH.

Oncogene. 2015 Feb 12;34(7):922-31. doi: 10.1038/onc.2014.17. Epub 2014 Mar 17.

PMID:
24632604
16.

The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions.

O'Neil TK, Duffy LR, Frey JW, Hornberger TA.

J Physiol. 2009 Jul 15;587(Pt 14):3691-701. doi: 10.1113/jphysiol.2009.173609. Epub 2009 May 26.

17.

Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism.

Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER, Esser KA.

Biochem J. 2004 Jun 15;380(Pt 3):795-804.

18.

Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: implications for a direct activation of mTOR by phosphatidic acid.

You JS, Frey JW, Hornberger TA.

PLoS One. 2012;7(10):e47258. doi: 10.1371/journal.pone.0047258. Epub 2012 Oct 15.

19.

Fetal brain mTOR signaling activation in tuberous sclerosis complex.

Tsai V, Parker WE, Orlova KA, Baybis M, Chi AW, Berg BD, Birnbaum JF, Estevez J, Okochi K, Sarnat HB, Flores-Sarnat L, Aronica E, Crino PB.

Cereb Cortex. 2014 Feb;24(2):315-27. doi: 10.1093/cercor/bhs310. Epub 2012 Oct 18.

20.

Partial dissociation of TSC2 and mTOR phosphorylation in cardiac and skeletal muscle of rats in vivo.

Forsyth S, Vary TC.

Mol Cell Biochem. 2008 Dec;319(1-2):141-51. doi: 10.1007/s11010-008-9887-1. Epub 2008 Aug 1.

Supplemental Content

Support Center