Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Quantum-like model for the adaptive dynamics of the genetic regulation of E. coli's metabolism of glucose/lactose.

Asano M, Basieva I, Khrennikov A, Ohya M, Tanaka Y, Yamato I.

Syst Synth Biol. 2012 Jun;6(1-2):1-7. doi: 10.1007/s11693-012-9091-1. Epub 2012 Apr 11.

2.

Quantum-like model of diauxie in Escherichia coli: operational description of precultivation effect.

Asano M, Basieva I, Khrennikov A, Ohya M, Tanaka Y, Yamato I.

J Theor Biol. 2012 Dec 7;314:130-7. doi: 10.1016/j.jtbi.2012.08.022. Epub 2012 Sep 12.

PMID:
22982333
3.

Three-body system metaphor for the two-slit experiment and Escherichia coli lactose-glucose metabolism.

Asano M, Khrennikov A, Ohya M, Tanaka Y, Yamato I.

Philos Trans A Math Phys Eng Sci. 2016 May 28;374(2068). pii: 20150243. doi: 10.1098/rsta.2015.0243.

4.

Quantum-like interference effect in gene expression: glucose-lactose destructive interference.

Basieva I, Khrennikov A, Ohya M, Yamato I.

Syst Synth Biol. 2011 Jun;5(1-2):59-68. doi: 10.1007/s11693-011-9081-8. Epub 2011 Mar 20.

5.

Novel insights into E. coli's hexuronate metabolism: KduI facilitates the conversion of galacturonate and glucuronate under osmotic stress conditions.

Rothe M, Alpert C, Loh G, Blaut M.

PLoS One. 2013;8(2):e56906. doi: 10.1371/journal.pone.0056906. Epub 2013 Feb 21.

6.

A model of epigenetic evolution based on theory of open quantum systems.

Asano M, Basieva I, Khrennikov A, Ohya M, Tanaka Y, Yamato I.

Syst Synth Biol. 2013 Dec;7(4):161-73. doi: 10.1007/s11693-013-9109-3. Epub 2013 Jun 18.

7.

Genome-scale reconstruction of Escherichia coli's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization.

Thiele I, Jamshidi N, Fleming RM, Palsson BØ.

PLoS Comput Biol. 2009 Mar;5(3):e1000312. doi: 10.1371/journal.pcbi.1000312. Epub 2009 Mar 13.

8.

An in vivo metabolic approach for deciphering the product specificity of glycerate kinase proves that both E. coli's glycerate kinases generate 2-phosphoglycerate.

Zelcbuch L, Razo-Mejia M, Herz E, Yahav S, Antonovsky N, Kroytoro H, Milo R, Bar-Even A.

PLoS One. 2015 Mar 30;10(3):e0122957. doi: 10.1371/journal.pone.0122957. eCollection 2015.

9.
10.

Model of SOS-induced mutagenesis in bacteria Escherichia coli under ultraviolet irradiation.

Belov OV, Krasavin EA, Parkhomenko AY.

J Theor Biol. 2009 Dec 7;261(3):388-95. doi: 10.1016/j.jtbi.2009.08.016. Epub 2009 Aug 21.

PMID:
19699751
11.

[Analysis of the dynamics of Escherichia coli development].

Kolpakova SD.

Biull Eksp Biol Med. 1993 Apr;115(4):399-401. Russian.

PMID:
8049404
12.

Dispensability of Escherichia coli's latent pathways.

Cornelius SP, Lee JS, Motter AE.

Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3124-9. doi: 10.1073/pnas.1009772108. Epub 2011 Feb 7.

13.

Protein expression dynamics during Escherichia coli glucose-lactose diauxie.

Mostovenko E, Deelder AM, Palmblad M.

BMC Microbiol. 2011 Jun 1;11:126. doi: 10.1186/1471-2180-11-126.

14.

PROKARYO: an illustrative and interactive computational model of the lactose operon in the bacterium Escherichia coli.

Esmaeili A, Davison T, Wu A, Alcantara J, Jacob C.

BMC Bioinformatics. 2015 Sep 29;16:311. doi: 10.1186/s12859-015-0720-z.

15.

Phenotypic bistability in Escherichia coli's central carbon metabolism.

Kotte O, Volkmer B, Radzikowski JL, Heinemann M.

Mol Syst Biol. 2014 Jul 1;10:736. doi: 10.15252/msb.20135022.

16.

Functional characterization of alternate optimal solutions of Escherichia coli's transcriptional and translational machinery.

Thiele I, Fleming RM, Bordbar A, Schellenberger J, Palsson BØ.

Biophys J. 2010 May 19;98(10):2072-81. doi: 10.1016/j.bpj.2010.01.060.

17.

Determinants of bistability in induction of the Escherichia coli lac operon.

Dreisigmeyer DW, Stajic J, Nemenman I, Hlavacek WS, Wall ME.

IET Syst Biol. 2008 Sep;2(5):293-303. doi: 10.1049/iet-syb:20080095.

PMID:
19045824
18.

Analog regulation of metabolic demand.

Sonnenschein N, Geertz M, Muskhelishvili G, Hütt MT.

BMC Syst Biol. 2011 Mar 15;5:40. doi: 10.1186/1752-0509-5-40.

20.

Bacteriophage-encoded cochaperonins can substitute for Escherichia coli's essential GroES protein.

Keppel F, Rychner M, Georgopoulos C.

EMBO Rep. 2002 Sep;3(9):893-8. Epub 2002 Aug 16.

Supplemental Content

Support Center