Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 160

1.

The role of interleukin-1 and interleukin-18 in pro-inflammatory and anti-viral responses to rhinovirus in primary bronchial epithelial cells.

Piper SC, Ferguson J, Kay L, Parker LC, Sabroe I, Sleeman MA, Briend E, Finch DK.

PLoS One. 2013 May 28;8(5):e63365. doi: 10.1371/journal.pone.0063365. Print 2013.

2.

Rhinovirus infection of primary cultures of human tracheal epithelium: role of ICAM-1 and IL-1beta.

Terajima M, Yamaya M, Sekizawa K, Okinaga S, Suzuki T, Yamada N, Nakayama K, Ohrui T, Oshima T, Numazaki Y, Sasaki H.

Am J Physiol. 1997 Oct;273(4 Pt 1):L749-59.

PMID:
9357849
3.

Interleukin-17A modulates human airway epithelial responses to human rhinovirus infection.

Wiehler S, Proud D.

Am J Physiol Lung Cell Mol Physiol. 2007 Aug;293(2):L505-15. Epub 2007 Jun 1.

4.

Azithromycin induces anti-viral responses in bronchial epithelial cells.

Gielen V, Johnston SL, Edwards MR.

Eur Respir J. 2010 Sep;36(3):646-54. doi: 10.1183/09031936.00095809. Epub 2010 Feb 11.

5.

Allergic environment enhances airway epithelial pro-inflammatory responses to rhinovirus infection.

Herbert C, Do K, Chiu V, Garthwaite L, Chen Y, Young PM, Traini D, Kumar RK.

Clin Sci (Lond). 2017 Mar 1;131(6):499-509. doi: 10.1042/CS20160939. Epub 2017 Jan 23.

PMID:
28115681
6.

Corticosteroids and beta2 agonists differentially regulate rhinovirus-induced interleukin-6 via distinct Cis-acting elements.

Edwards MR, Haas J, Panettieri RA Jr, Johnson M, Johnston SL.

J Biol Chem. 2007 May 25;282(21):15366-75. Epub 2007 Mar 29.

7.

Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

Proud D, Hudy MH, Wiehler S, Zaheer RS, Amin MA, Pelikan JB, Tacon CE, Tonsaker TO, Walker BL, Kooi C, Traves SL, Leigh R.

PLoS One. 2012;7(7):e40762. doi: 10.1371/journal.pone.0040762. Epub 2012 Jul 12.

8.

Diversity in the bronchial epithelial cell response to infection with different rhinovirus strains.

Wark PA, Grissell T, Davies B, See H, Gibson PG.

Respirology. 2009 Mar;14(2):180-6. doi: 10.1111/j.1440-1843.2009.01480.x. Epub 2009 Feb 4.

PMID:
19207121
9.
10.

Nerve growth factor modulates human rhinovirus infection in airway epithelial cells by controlling ICAM-1 expression.

Othumpangat S, Regier M, Piedimonte G.

Am J Physiol Lung Cell Mol Physiol. 2012 May 15;302(10):L1057-66. doi: 10.1152/ajplung.00365.2011. Epub 2012 Mar 16.

11.

Rhinovirus-induced IL-1β release from bronchial epithelial cells is independent of functional P2X7.

Shi L, Manthei DM, Guadarrama AG, Lenertz LY, Denlinger LC.

Am J Respir Cell Mol Biol. 2012 Sep;47(3):363-71. doi: 10.1165/rcmb.2011-0267OC. Epub 2012 Apr 5.

12.

Trehalose-mediated autophagy impairs the anti-viral function of human primary airway epithelial cells.

Wu Q, Jiang D, Huang C, van Dyk LF, Li L, Chu HW.

PLoS One. 2015 Apr 16;10(4):e0124524. doi: 10.1371/journal.pone.0124524. eCollection 2015.

13.

Novel immune genes associated with excessive inflammatory and antiviral responses to rhinovirus in COPD.

Baines KJ, Hsu AC, Tooze M, Gunawardhana LP, Gibson PG, Wark PA.

Respir Res. 2013 Feb 6;14:15. doi: 10.1186/1465-9921-14-15.

14.

Role of interleukin-1 and MyD88-dependent signaling in rhinovirus infection.

Stokes CA, Ismail S, Dick EP, Bennett JA, Johnston SL, Edwards MR, Sabroe I, Parker LC.

J Virol. 2011 Aug;85(15):7912-21. doi: 10.1128/JVI.02649-10. Epub 2011 May 18.

15.

Modulation of the epithelial inflammatory response to rhinovirus in an atopic environment.

Xatzipsalti M, Psarros F, Konstantinou G, Gaga M, Gourgiotis D, Saxoni-Papageorgiou P, Papadopoulos NG.

Clin Exp Allergy. 2008 Mar;38(3):466-72. doi: 10.1111/j.1365-2222.2007.02906.x.

PMID:
18269670
16.

Human monocytic cells direct the robust release of CXCL10 by bronchial epithelial cells during rhinovirus infection.

Korpi-Steiner NL, Valkenaar SM, Bates ME, Evans MD, Gern JE, Bertics PJ.

Clin Exp Allergy. 2010 Aug;40(8):1203-13. doi: 10.1111/j.1365-2222.2010.03546.x. Epub 2010 Jun 7.

17.

Exogenous IFN-β has antiviral and anti-inflammatory properties in primary bronchial epithelial cells from asthmatic subjects exposed to rhinovirus.

Cakebread JA, Xu Y, Grainge C, Kehagia V, Howarth PH, Holgate ST, Davies DE.

J Allergy Clin Immunol. 2011 May;127(5):1148-54.e9. doi: 10.1016/j.jaci.2011.01.023. Epub 2011 Feb 16.

PMID:
21329968
18.

Rhinovirus-bacteria coexposure synergistically induces CCL20 production from human bronchial epithelial cells.

Maciejewski BA, Jamieson KC, Arnason JW, Kooi C, Wiehler S, Traves SL, Leigh R, Proud D.

Am J Physiol Lung Cell Mol Physiol. 2017 May 1;312(5):L731-L740. doi: 10.1152/ajplung.00362.2016. Epub 2017 Mar 10.

PMID:
28283475
19.

Impaired type I and type III interferon induction and rhinovirus control in human cystic fibrosis airway epithelial cells.

Vareille M, Kieninger E, Alves MP, Kopf BS, Möller A, Geiser T, Johnston SL, Edwards MR, Regamey N.

Thorax. 2012 Jun;67(6):517-25. doi: 10.1136/thoraxjnl-2011-200405. Epub 2012 Jan 2. Retraction in: Thorax. 2013 Sep;68(9):886.

PMID:
22213737
20.

Contribution of bronchial fibroblasts to the antiviral response in asthma.

Bedke N, Haitchi HM, Xatzipsalti M, Holgate ST, Davies DE.

J Immunol. 2009 Mar 15;182(6):3660-7. doi: 10.4049/jimmunol.0802471.

Supplemental Content

Support Center