Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding.

Huang YT, Liu TH, Lin SM, Chen YW, Pan YJ, Lee CH, Sun YJ, Tseng FG, Pan RL.

J Biol Chem. 2013 Jul 5;288(27):19312-20. doi: 10.1074/jbc.M113.469353. Epub 2013 May 29.

2.

Functional and fluorescence analyses of tryptophan residues in H+-pyrophosphatase of Clostridium tetani.

Chen YW, Lee CH, Huang YT, Pan YJ, Lin SM, Lo YY, Lee CH, Huang LK, Huang YF, Hsu YD, Pan RL.

J Bioenerg Biomembr. 2014 Apr;46(2):127-34.

PMID:
24121937
3.

Distance variations between active sites of H(+)-pyrophosphatase determined by fluorescence resonance energy transfer.

Huang YT, Liu TH, Chen YW, Lee CH, Chen HH, Huang TW, Hsu SH, Lin SM, Pan YJ, Lee CH, Hsu IC, Tseng FG, Fu CC, Pan RL.

J Biol Chem. 2010 Jul 30;285(31):23655-64. doi: 10.1074/jbc.M110.134916. Epub 2010 May 28.

4.

Functional investigation of transmembrane helix 3 in H⁺-translocating pyrophosphatase.

Lee CH, Chen YW, Huang YT, Pan YJ, Lee CH, Lin SM, Huang LK, Lo YY, Huang YF, Hsu YD, Yen SC, Hwang JK, Pan RL.

J Membr Biol. 2013 Dec;246(12):959-66.

PMID:
24121627
5.

Role of transmembrane segment 5 of the plant vacuolar H+-pyrophosphatase.

Van RC, Pan YJ, Hsu SH, Huang YT, Hsiao YY, Pan RL.

Biochim Biophys Acta. 2005 Aug 15;1709(1):84-94.

6.

Substrate-induced changes in domain interaction of vacuolar H⁺-pyrophosphatase.

Hsu SH, Lo YY, Liu TH, Pan YJ, Huang YT, Sun YJ, Hung CC, Tseng FG, Yang CW, Pan RL.

J Biol Chem. 2015 Jan 9;290(2):1197-209. doi: 10.1074/jbc.M114.568139. Epub 2014 Dec 1.

7.

Crystal structure of a membrane-embedded H+-translocating pyrophosphatase.

Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ.

Nature. 2012 Mar 28;484(7394):399-403. doi: 10.1038/nature10963.

PMID:
22456709
8.

Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations.

Luoto HH, Nordbo E, Baykov AA, Lahti R, Malinen AM.

J Biol Chem. 2013 Dec 6;288(49):35489-99. doi: 10.1074/jbc.M113.510909. Epub 2013 Oct 24.

9.

Roles of histidine residues in plant vacuolar H(+)-pyrophosphatase.

Hsiao YY, Van RC, Hung SH, Lin HH, Pan RL.

Biochim Biophys Acta. 2004 Feb 15;1608(2-3):190-9.

10.

Deletion mutation analysis on C-terminal domain of plant vacuolar H(+)-pyrophosphatase.

Lin HH, Pan YJ, Hsu SH, Van RC, Hsiao YY, Chen JH, Pan RL.

Arch Biochem Biophys. 2005 Oct 15;442(2):206-13. Epub 2005 Sep 2.

PMID:
16185650
11.
12.

Elucidating the role of conserved glutamates in H+-pyrophosphatase of Rhodospirillum rubrum.

Malinen AM, Belogurov GA, Salminen M, Baykov AA, Lahti R.

J Biol Chem. 2004 Jun 25;279(26):26811-6. Epub 2004 Apr 23.

13.
14.

Membrane topology of the H+-pyrophosphatase of Streptomyces coelicolor determined by cysteine-scanning mutagenesis.

Mimura H, Nakanishi Y, Hirono M, Maeshima M.

J Biol Chem. 2004 Aug 13;279(33):35106-12. Epub 2004 Jun 8.

15.

Identification of essential lysines involved in substrate binding of vacuolar H+-pyrophosphatase.

Lee CH, Pan YJ, Huang YT, Liu TH, Hsu SH, Lee CH, Chen YW, Lin SM, Huang LK, Pan RL.

J Biol Chem. 2011 Apr 8;286(14):11970-6. doi: 10.1074/jbc.M110.190215. Epub 2011 Feb 3.

16.

Identification of the critical residues for the function of vacuolar H⁺-pyrophosphatase by mutational analysis based on the 3D structure.

Asaoka M, Segami S, Maeshima M.

J Biochem. 2014 Dec;156(6):333-44. doi: 10.1093/jb/mvu046. Epub 2014 Jul 28.

PMID:
25070903
17.

Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase.

Nakanishi Y, Saijo T, Wada Y, Maeshima M.

J Biol Chem. 2001 Mar 9;276(10):7654-60. Epub 2000 Dec 11.

18.

Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase.

Hsiao YY, Pan YJ, Hsu SH, Huang YT, Liu TH, Lee CH, Lee CH, Liu PF, Chang WC, Wang YK, Chien LF, Pan RL.

Biochim Biophys Acta. 2007 Jul;1767(7):965-73. Epub 2007 May 3.

19.

A plant proton-pumping inorganic pyrophosphatase functionally complements the vacuolar ATPase transport activity and confers bafilomycin resistance in yeast.

Pérez-Castiñeira JR, Hernández A, Drake R, Serrano A.

Biochem J. 2011 Jul 15;437(2):269-78. doi: 10.1042/BJ20110447.

PMID:
21612578
20.

Proton pumping inorganic pyrophosphatase of endoplasmic reticulum-enriched vesicles from etiolated mung bean seedlings.

Kuo SY, Chien LF, Hsiao YY, Van Ru C, Yan KH, Liu PF, Mao SJ, Pan RL.

J Plant Physiol. 2005 Feb;162(2):129-38.

PMID:
15779823

Supplemental Content

Support Center