Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Mycobacterium tuberculosis PstS1 amplifies IFN-γ and induces IL-17/IL-22 responses by unrelated memory CD4+ T cells via dendritic cell activation.

Palma C, Schiavoni G, Abalsamo L, Mattei F, Piccaro G, Sanchez M, Fernandez C, Singh M, Gabriele L.

Eur J Immunol. 2013 Sep;43(9):2386-97. doi: 10.1002/eji.201243245. Epub 2013 Jul 15.

2.

TLR2 engagement on CD4(+) T cells enhances effector functions and protective responses to Mycobacterium tuberculosis.

Reba SM, Li Q, Onwuzulike S, Ding X, Karim AF, Hernandez Y, Fulton SA, Harding CV, Lancioni CL, Nagy N, Rodriguez ME, Wearsch PA, Rojas RE.

Eur J Immunol. 2014 May;44(5):1410-21. doi: 10.1002/eji.201344100. Epub 2014 Mar 14.

3.

The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Th1 immune response in mice.

Palma C, Iona E, Giannoni F, Pardini M, Brunori L, Orefici G, Fattorini L, Cassone A.

Cell Microbiol. 2007 Jun;9(6):1455-65. Epub 2007 Jan 22.

PMID:
17250590
4.

The M. tuberculosis phosphate-binding lipoproteins PstS1 and PstS3 induce Th1 and Th17 responses that are not associated with protection against M. tuberculosis infection.

Palma C, Spallek R, Piccaro G, Pardini M, Jonas F, Oehlmann W, Singh M, Cassone A.

Clin Dev Immunol. 2011;2011:690328. doi: 10.1155/2011/690328. Epub 2011 Mar 27.

6.

ESAT-6-dependent cytosolic pattern recognition drives noncognate tuberculosis control in vivo.

Kupz A, Zedler U, Stäber M, Perdomo C, Dorhoi A, Brosch R, Kaufmann SH.

J Clin Invest. 2016 Jun 1;126(6):2109-22. doi: 10.1172/JCI84978. Epub 2016 Apr 25.

7.
8.

Mycobacterium tuberculosis PE27 activates dendritic cells and contributes to Th1-polarized memory immune responses during in vivo infection.

Kim WS, Kim JS, Cha SB, Kim SJ, Kim H, Kwon KW, Han SJ, Choi SY, Shin SJ.

Immunobiology. 2016 Mar;221(3):440-53. doi: 10.1016/j.imbio.2015.11.006. Epub 2015 Nov 27.

PMID:
26655143
10.

Double- and monofunctional CD4⁺ and CD8⁺ T-cell responses to Mycobacterium tuberculosis DosR antigens and peptides in long-term latently infected individuals.

Commandeur S, Lin MY, van Meijgaarden KE, Friggen AH, Franken KL, Drijfhout JW, Korsvold GE, Oftung F, Geluk A, Ottenhoff TH.

Eur J Immunol. 2011 Oct;41(10):2925-36. doi: 10.1002/eji.201141602. Epub 2011 Aug 30.

11.

Mycobacterium tuberculosis MmsA, a novel immunostimulatory antigen, induces dendritic cell activation and promotes Th1 cell-type immune responses.

Kim JS, Kim WS, Choi HH, Kim HM, Kwon KW, Han SJ, Cha SB, Cho SN, Koh WJ, Shin SJ.

Cell Immunol. 2015 Nov-Dec;298(1-2):115-25. doi: 10.1016/j.cellimm.2015.10.005. Epub 2015 Oct 23.

PMID:
26507911
12.

Protection against Mycobacterium tuberculosis infection offered by a new multistage subunit vaccine correlates with increased number of IFN-γ+ IL-2+ CD4+ and IFN-γ+ CD8+ T cells.

Wang X, Zhang J, Liang J, Zhang Y, Teng X, Yuan X, Fan X.

PLoS One. 2015 Mar 30;10(3):e0122560. doi: 10.1371/journal.pone.0122560. eCollection 2015.

13.

IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17 response during tuberculosis but is dispensable for protection and antigen-specific IFN-gamma responses if IL-12p70 is available.

Khader SA, Pearl JE, Sakamoto K, Gilmartin L, Bell GK, Jelley-Gibbs DM, Ghilardi N, deSauvage F, Cooper AM.

J Immunol. 2005 Jul 15;175(2):788-95.

14.

Mycobacterium tuberculosis RpfE promotes simultaneous Th1- and Th17-type T-cell immunity via TLR4-dependent maturation of dendritic cells.

Choi HG, Kim WS, Back YW, Kim H, Kwon KW, Kim JS, Shin SJ, Kim HJ.

Eur J Immunol. 2015 Jul;45(7):1957-71. doi: 10.1002/eji.201445329. Epub 2015 May 12.

15.

Reduced frequency of memory T cells and increased Th17 responses in patients with active tuberculosis.

Marín ND, París SC, Rojas M, García LF.

Clin Vaccine Immunol. 2012 Oct;19(10):1667-76. Epub 2012 Aug 22.

16.

Protective CD4 T cells targeting cryptic epitopes of Mycobacterium tuberculosis resist infection-driven terminal differentiation.

Woodworth JS, Aagaard CS, Hansen PR, Cassidy JP, Agger EM, Andersen P.

J Immunol. 2014 Apr 1;192(7):3247-58. doi: 10.4049/jimmunol.1300283. Epub 2014 Feb 26.

17.

Engaging the CD40-CD40L pathway augments T-helper cell responses and improves control of Mycobacterium tuberculosis infection.

Sia JK, Bizzell E, Madan-Lala R, Rengarajan J.

PLoS Pathog. 2017 Aug 2;13(8):e1006530. doi: 10.1371/journal.ppat.1006530. eCollection 2017 Aug.

18.

ESAT-6- and CFP-10-specific Th1, Th22 and Th17 cells in tuberculous pleurisy may contribute to the local immune response against Mycobacterium tuberculosis infection.

Qiao D, Yang BY, Li L, Ma JJ, Zhang XL, Lao SH, Wu CY.

Scand J Immunol. 2011 Apr;73(4):330-7. doi: 10.1111/j.1365-3083.2011.02512.x.

19.

IL-22 is mainly produced by IFNγ-secreting cells but is dispensable for host protection against Mycobacterium tuberculosis infection.

Behrends J, Renauld JC, Ehlers S, Hölscher C.

PLoS One. 2013;8(2):e57379. doi: 10.1371/journal.pone.0057379. Epub 2013 Feb 27.

20.

Mycobacterium tuberculosis promotes Th17 expansion via regulation of human dendritic cells toward a high CD14 and low IL-12p70 phenotype that reprograms upon exogenous IFN-γ.

Søndergaard JN, Laursen JM, Rosholm LB, Brix S.

Int Immunol. 2014 Dec;26(12):705-16. doi: 10.1093/intimm/dxu085. Epub 2014 Sep 15.

PMID:
25223368

Supplemental Content

Support Center