Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Phase coding by grid cells in unconstrained environments: two-dimensional phase precession.

Climer JR, Newman EL, Hasselmo ME.

Eur J Neurosci. 2013 Aug;38(4):2526-41. doi: 10.1111/ejn.12256. Epub 2013 May 29.

2.

Theta phase precession of grid and place cell firing in open environments.

Jeewajee A, Barry C, Douchamps V, Manson D, Lever C, Burgess N.

Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120532. doi: 10.1098/rstb.2012.0532. Print 2014 Feb 5.

3.

Hippocampus-independent phase precession in entorhinal grid cells.

Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI.

Nature. 2008 Jun 26;453(7199):1248-52. doi: 10.1038/nature06957. Epub 2008 May 14.

PMID:
18480753
4.

Hyperpolarization-activated cyclic nucleotide-gated 1 independent grid cell-phase precession in mice.

Eggink H, Mertens P, Storm E, Giocomo LM.

Hippocampus. 2014 Mar;24(3):249-56. doi: 10.1002/hipo.22231. Epub 2013 Dec 8.

PMID:
24638961
5.

Movement dependence and layer specificity of entorhinal phase precession in two-dimensional environments.

Reifenstein E, Stemmler M, Herz AV, Kempter R, Schreiber S.

PLoS One. 2014 Jun 24;9(6):e100638. doi: 10.1371/journal.pone.0100638. eCollection 2014.

6.

Entorhinal theta phase precession sculpts dentate gyrus place fields.

Molter C, Yamaguchi Y.

Hippocampus. 2008;18(9):919-30. doi: 10.1002/hipo.20450.

PMID:
18528856
7.
8.

Cellular mechanisms of spatial navigation in the medial entorhinal cortex.

Schmidt-Hieber C, Häusser M.

Nat Neurosci. 2013 Mar;16(3):325-31. doi: 10.1038/nn.3340. Epub 2013 Feb 10.

PMID:
23396102
9.

Grid cells in rat entorhinal cortex encode physical space with independent firing fields and phase precession at the single-trial level.

Reifenstein ET, Kempter R, Schreiber S, Stemmler MB, Herz AV.

Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6301-6. doi: 10.1073/pnas.1109599109. Epub 2012 Apr 2.

10.

Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning.

Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME.

Science. 2011 Apr 29;332(6029):595-9. doi: 10.1126/science.1201652.

11.
12.

Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics.

Navratilova Z, Giocomo LM, Fellous JM, Hasselmo ME, McNaughton BL.

Hippocampus. 2012 Apr;22(4):772-89. doi: 10.1002/hipo.20939. Epub 2011 Apr 11.

PMID:
21484936
13.

Bat and rat neurons differ in theta-frequency resonance despite similar coding of space.

Heys JG, MacLeod KM, Moss CF, Hasselmo ME.

Science. 2013 Apr 19;340(6130):363-7. doi: 10.1126/science.1233831.

14.

Impact of temporal coding of presynaptic entorhinal cortex grid cells on the formation of hippocampal place fields.

Molter C, Yamaguchi Y.

Neural Netw. 2008 Mar-Apr;21(2-3):303-10. doi: 10.1016/j.neunet.2007.12.032. Epub 2007 Dec 27. Erratum in: Neural Netw. 2008 May;21(4):698.

PMID:
18242058
16.

A unified view of theta-phase coding in the entorhinal-hippocampal system.

Yamaguchi Y, Sato N, Wagatsuma H, Wu Z, Molter C, Aota Y.

Curr Opin Neurobiol. 2007 Apr;17(2):197-204. Epub 2007 Mar 26. Review.

PMID:
17379502
17.

The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity.

Schlesiger MI, Cannova CC, Boublil BL, Hales JB, Mankin EA, Brandon MP, Leutgeb JK, Leibold C, Leutgeb S.

Nat Neurosci. 2015 Aug;18(8):1123-32. doi: 10.1038/nn.4056. Epub 2015 Jun 29.

18.

Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats.

Jeewajee A, Barry C, O'Keefe J, Burgess N.

Hippocampus. 2008;18(12):1175-85. doi: 10.1002/hipo.20510.

19.
20.

Supplemental Content

Support Center