Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 153

1.

Rats selectively bred for differences in aerobic capacity have similar hypertensive responses to chronic intermittent hypoxia.

Sharpe AL, Andrade MA, Herrera-Rosales M, Britton SL, Koch LG, Toney GM.

Am J Physiol Heart Circ Physiol. 2013 Aug 1;305(3):H403-9. doi: 10.1152/ajpheart.00317.2013. Epub 2013 May 24.

2.

Chronic intermittent hypoxia increases sympathetic control of blood pressure: role of neuronal activity in the hypothalamic paraventricular nucleus.

Sharpe AL, Calderon AS, Andrade MA, Cunningham JT, Mifflin SW, Toney GM.

Am J Physiol Heart Circ Physiol. 2013 Dec;305(12):H1772-80. doi: 10.1152/ajpheart.00592.2013. Epub 2013 Oct 4.

3.

Increased sympathetic activity in rats submitted to chronic intermittent hypoxia.

Zoccal DB, Bonagamba LG, Oliveira FR, Antunes-Rodrigues J, Machado BH.

Exp Physiol. 2007 Jan;92(1):79-85. Epub 2006 Nov 3.

4.

Knockdown of tyrosine hydroxylase in the nucleus of the solitary tract reduces elevated blood pressure during chronic intermittent hypoxia.

Bathina CS, Rajulapati A, Franzke M, Yamamoto K, Cunningham JT, Mifflin S.

Am J Physiol Regul Integr Comp Physiol. 2013 Nov 1;305(9):R1031-9. doi: 10.1152/ajpregu.00260.2013. Epub 2013 Sep 18.

5.

Central losartan attenuates increases in arterial pressure and expression of FosB/ΔFosB along the autonomic axis associated with chronic intermittent hypoxia.

Knight WD, Saxena A, Shell B, Nedungadi TP, Mifflin SW, Cunningham JT.

Am J Physiol Regul Integr Comp Physiol. 2013 Nov 1;305(9):R1051-8. doi: 10.1152/ajpregu.00541.2012. Epub 2013 Sep 11.

6.

Chronic intermittent hypoxia increases blood pressure and expression of FosB/DeltaFosB in central autonomic regions.

Knight WD, Little JT, Carreno FR, Toney GM, Mifflin SW, Cunningham JT.

Am J Physiol Regul Integr Comp Physiol. 2011 Jul;301(1):R131-9. doi: 10.1152/ajpregu.00830.2010. Epub 2011 May 4.

7.

Ang II-salt hypertension depends on neuronal activity in the hypothalamic paraventricular nucleus but not on local actions of tumor necrosis factor-α.

Bardgett ME, Holbein WW, Herrera-Rosales M, Toney GM.

Hypertension. 2014 Mar;63(3):527-34. doi: 10.1161/HYPERTENSIONAHA.113.02429. Epub 2013 Dec 9.

8.

Increased vasopressin transmission from the paraventricular nucleus to the rostral medulla augments cardiorespiratory outflow in chronic intermittent hypoxia-conditioned rats.

Kc P, Balan KV, Tjoe SS, Martin RJ, Lamanna JC, Haxhiu MA, Dick TE.

J Physiol. 2010 Feb 15;588(Pt 4):725-40. doi: 10.1113/jphysiol.2009.184580. Epub 2010 Jan 5.

9.

Altered sympathetic reflexes and vascular reactivity in rats after exposure to chronic intermittent hypoxia.

Silva AQ, Schreihofer AM.

J Physiol. 2011 Mar 15;589(Pt 6):1463-76. doi: 10.1113/jphysiol.2010.200691. Epub 2011 Jan 17.

10.

Resetting of the sympathetic baroreflex is associated with the onset of hypertension during chronic intermittent hypoxia.

Yamamoto K, Eubank W, Franzke M, Mifflin S.

Auton Neurosci. 2013 Jan;173(1-2):22-7. doi: 10.1016/j.autneu.2012.10.015. Epub 2012 Nov 17.

11.

Oxytocin neuron activation prevents hypertension that occurs with chronic intermittent hypoxia/hypercapnia in rats.

Jameson H, Bateman R, Byrne P, Dyavanapalli J, Wang X, Jain V, Mendelowitz D.

Am J Physiol Heart Circ Physiol. 2016 Jun 1;310(11):H1549-57. doi: 10.1152/ajpheart.00808.2015. Epub 2016 Mar 25.

12.

An Essential role for DeltaFosB in the median preoptic nucleus in the sustained hypertensive effects of chronic intermittent hypoxia.

Cunningham JT, Knight WD, Mifflin SW, Nestler EJ.

Hypertension. 2012 Jul;60(1):179-87. doi: 10.1161/HYPERTENSIONAHA.112.193789. Epub 2012 Jun 11.

13.

Chronic intermittent hypoxia-induced augmented cardiorespiratory outflow mediated by vasopressin-V₁A receptor signaling in the medulla.

Prabha K, Balan KV, Martin RJ, Lamanna JC, Haxhiu MA, Dick TE.

Adv Exp Med Biol. 2011;701:319-25. doi: 10.1007/978-1-4419-7756-4_43.

PMID:
21445804
14.

Activation of the hypothalamic paraventricular nucleus by forebrain hypertonicity selectively increases tonic vasomotor sympathetic nerve activity.

Holbein WW, Toney GM.

Am J Physiol Regul Integr Comp Physiol. 2015 Mar 1;308(5):R351-9. doi: 10.1152/ajpregu.00460.2014. Epub 2014 Dec 17.

15.

Salt-induced sympathoexcitation involves vasopressin V1a receptor activation in the paraventricular nucleus of the hypothalamus.

Ribeiro N, Panizza Hdo N, Santos KM, Ferreira-Neto HC, Antunes VR.

Am J Physiol Regul Integr Comp Physiol. 2015 Dec 1;309(11):R1369-79. doi: 10.1152/ajpregu.00312.2015. Epub 2015 Sep 9.

16.

Sympathetic-mediated hypertension of awake juvenile rats submitted to chronic intermittent hypoxia is not linked to baroreflex dysfunction.

Zoccal DB, Bonagamba LG, Paton JF, Machado BH.

Exp Physiol. 2009 Sep;94(9):972-83. doi: 10.1113/expphysiol.2009.048306. Epub 2009 Jul 3.

17.

Angiotensin II type 1a receptors in subfornical organ contribute towards chronic intermittent hypoxia-associated sustained increase in mean arterial pressure.

Saxena A, Little JT, Nedungadi TP, Cunningham JT.

Am J Physiol Heart Circ Physiol. 2015 Mar 1;308(5):H435-46. doi: 10.1152/ajpheart.00747.2014. Epub 2014 Dec 24.

18.

Effect of intravenous angiotensin II infusion on responses to hypothalamic PVN injection of bicuculline.

LaGrange LP, Toney GM, Bishop VS.

Hypertension. 2003 Dec;42(6):1124-9. Epub 2003 Nov 3.

19.

Increased cardiac output contributes to the development of chronic intermittent hypoxia-induced hypertension.

Lucking EF, O'Halloran KD, Jones JF.

Exp Physiol. 2014 Oct;99(10):1312-24. doi: 10.1113/expphysiol.2014.080556. Epub 2014 Jul 25.

20.

Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension.

Li HB, Qin DN, Ma L, Miao YW, Zhang DM, Lu Y, Song XA, Zhu GQ, Kang YM.

Toxicol Appl Pharmacol. 2014 Sep 1;279(2):141-9. doi: 10.1016/j.taap.2014.06.004. Epub 2014 Jun 14.

PMID:
24937322

Supplemental Content

Support Center