Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114

1.

Calcium phosphate bioceramics induce mineralization modulated by proteins.

Wang K, Leng Y, Lu X, Ren F.

Mater Sci Eng C Mater Biol Appl. 2013 Aug 1;33(6):3245-55. doi: 10.1016/j.msec.2013.04.004. Epub 2013 Apr 10.

PMID:
23706207
2.

A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo.

Xin R, Leng Y, Chen J, Zhang Q.

Biomaterials. 2005 Nov;26(33):6477-86.

PMID:
15992923
3.

TEM study of calcium phosphate precipitation on HA/TCP ceramics.

Leng Y, Chen J, Qu S.

Biomaterials. 2003 Jun;24(13):2125-31.

PMID:
12699649
4.

Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and β-tricalcium phosphate bioceramics.

França R, Samani TD, Bayade G, Yahia L, Sacher E.

J Colloid Interface Sci. 2014 Apr 15;420:182-8. doi: 10.1016/j.jcis.2013.12.055. Epub 2014 Jan 16.

PMID:
24559717
5.

An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration.

Liu H, Yazici H, Ergun C, Webster TJ, Bermek H.

Acta Biomater. 2008 Sep;4(5):1472-9. doi: 10.1016/j.actbio.2008.02.025. Epub 2008 Mar 15.

PMID:
18394980
6.

The effects of hydroxyapatite/calcium phosphate glass scaffold and its surface modification with bovine serum albumin on 1-wall intrabony defects of beagle dogs: a preliminary study.

Um YJ, Jung UW, Chae GJ, Kim CS, Lee YK, Cho KS, Kim CK, Choi SH.

Biomed Mater. 2008 Dec;3(4):044113. doi: 10.1088/1748-6041/3/4/044113. Epub 2008 Nov 25.

PMID:
19029611
7.

[The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].

Ji J, Ran J, Gou L, Wang F, Sun L.

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2004 Aug;21(4):531-5. Chinese.

PMID:
15357425
8.

Dynamic competitive adsorption of bone-related proteins on calcium phosphate ceramic particles with different phase composition and microstructure.

Wang J, Zhang H, Zhu X, Fan H, Fan Y, Zhang X.

J Biomed Mater Res B Appl Biomater. 2013 Aug;101(6):1069-77. doi: 10.1002/jbm.b.32917. Epub 2013 Apr 4.

PMID:
23559460
9.

Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.

Rojbani H, Nyan M, Ohya K, Kasugai S.

J Biomed Mater Res A. 2011 Sep 15;98(4):488-98. doi: 10.1002/jbm.a.33117. Epub 2011 Jun 16.

PMID:
21681941
10.

Periodontal regeneration in experimentally-induced alveolar bone dehiscence by an improved porous biphasic calcium phosphate ceramic in beagle dogs.

Shi H, Ma J, Zhao N, Chen Y, Liao Y.

J Mater Sci Mater Med. 2008 Dec;19(12):3515-24. doi: 10.1007/s10856-008-3524-0. Epub 2008 Jul 15.

PMID:
18622766
11.

A long-term evaluation of osteoinductive HA/beta-TCP ceramics in vivo: 4.5 years study in pigs.

Ye F, Lu X, Lu B, Wang J, Shi Y, Zhang L, Chen J, Li Y, Bu H.

J Mater Sci Mater Med. 2007 Nov;18(11):2173-8. Epub 2007 Sep 15.

PMID:
17874226
12.

Preparation and characterization of novel biphasic calcium phosphate powders (alpha-TCP/HA) derived from carbonated amorphous calcium phosphates.

Li Y, Kong F, Weng W.

J Biomed Mater Res B Appl Biomater. 2009 May;89(2):508-17. doi: 10.1002/jbm.b.31242.

PMID:
18937266
13.

The adsorptive behavior of albumin and lysozyme proteins on rod-shaped and plate-shaped hydroxyapatite.

Ozeki K, Hoshino T, Aoki H, Masuzawa T.

Biomed Mater Eng. 2013;23(3):239-47. doi: 10.3233/BME-130747.

PMID:
23629536
14.

Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate.

Vani R, Girija EK, Elayaraja K, Prakash Parthiban S, Kesavamoorthy R, Narayana Kalkura S.

J Mater Sci Mater Med. 2009 Dec;20 Suppl 1:S43-8. doi: 10.1007/s10856-008-3480-8. Epub 2008 Jun 17.

PMID:
18560768
15.

3D microenvironment as essential element for osteoinduction by biomaterials.

Habibovic P, Yuan H, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K.

Biomaterials. 2005 Jun;26(17):3565-75.

PMID:
15621247
16.

Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics.

Kinnari TJ, Esteban J, Martin-de-Hijas NZ, Sánchez-Muñoz O, Sánchez-Salcedo S, Colilla M, Vallet-Regí M, Gomez-Barrena E.

J Med Microbiol. 2009 Jan;58(Pt 1):132-7. doi: 10.1099/jmm.0.002758-0.

PMID:
19074665
17.

The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.

Wang C, Xue Y, Lin K, Lu J, Chang J, Sun J.

Acta Biomater. 2012 Jan;8(1):350-60. doi: 10.1016/j.actbio.2011.08.019. Epub 2011 Aug 28.

PMID:
21925627
18.

Effect of electrical polarization and composition of biphasic calcium phosphates on early stage osteoblast interactions.

Tarafder S, Bodhak S, Bandyopadhyay A, Bose S.

J Biomed Mater Res B Appl Biomater. 2011 May;97(2):306-14. doi: 10.1002/jbm.b.31816. Epub 2011 Mar 25.

PMID:
21442744
19.

Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs.

Wang L, Zhang B, Bao C, Habibovic P, Hu J, Zhang X.

PLoS One. 2014 Sep 17;9(9):e107044. doi: 10.1371/journal.pone.0107044. eCollection 2014.

20.

Physicochemical properties and cytotoxicities of Sr-containing biphasic calcium phosphate bone scaffolds.

Dagang G, Kewei X, Yaxiong L.

J Mater Sci Mater Med. 2010 Jun;21(6):1927-36. doi: 10.1007/s10856-010-4044-2. Epub 2010 Mar 10.

PMID:
20217190

Supplemental Content

Support Center