Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 243

1.

Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming.

Christoforou N, Chellappan M, Adler AF, Kirkton RD, Wu T, Addis RC, Bursac N, Leong KW.

PLoS One. 2013 May 21;8(5):e63577. doi: 10.1371/journal.pone.0063577. Print 2013.

2.

Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5.

Belian E, Noseda M, Abreu Paiva MS, Leja T, Sampson R, Schneider MD.

PLoS One. 2015 Jun 5;10(6):e0125384. doi: 10.1371/journal.pone.0125384. eCollection 2015.

3.

Cardiac gene activation analysis in mammalian non-myoblasic cells by Nkx2-5, Tbx5, Gata4 and Myocd.

Zhou L, Liu Y, Lu L, Lu X, Dixon RA.

PLoS One. 2012;7(10):e48028. doi: 10.1371/journal.pone.0048028. Epub 2012 Oct 29.

4.

Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors.

Nam YJ, Lubczyk C, Bhakta M, Zang T, Fernandez-Perez A, McAnally J, Bassel-Duby R, Olson EN, Munshi NV.

Development. 2014 Nov;141(22):4267-78. doi: 10.1242/dev.114025. Epub 2014 Oct 24.

5.

A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells.

Protze S, Khattak S, Poulet C, Lindemann D, Tanaka EM, Ravens U.

J Mol Cell Cardiol. 2012 Sep;53(3):323-32. doi: 10.1016/j.yjmcc.2012.04.010. Epub 2012 Apr 28.

PMID:
22575762
6.

Inefficient reprogramming of fibroblasts into cardiomyocytes using Gata4, Mef2c, and Tbx5.

Chen JX, Krane M, Deutsch MA, Wang L, Rav-Acha M, Gregoire S, Engels MC, Rajarajan K, Karra R, Abel ED, Wu JC, Milan D, Wu SM.

Circ Res. 2012 Jun 22;111(1):50-5. doi: 10.1161/CIRCRESAHA.112.270264. Epub 2012 May 10.

7.

Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.

Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D.

Cell. 2010 Aug 6;142(3):375-86. doi: 10.1016/j.cell.2010.07.002.

8.

In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes.

Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D.

Nature. 2012 May 31;485(7400):593-8. doi: 10.1038/nature11044.

9.

Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.

Mohamed TM, Stone NR, Berry EC, Radzinsky E, Huang Y, Pratt K, Ang YS, Yu P, Wang H, Tang S, Magnitsky S, Ding S, Ivey KN, Srivastava D.

Circulation. 2017 Mar 7;135(10):978-995. doi: 10.1161/CIRCULATIONAHA.116.024692. Epub 2016 Nov 10.

PMID:
27834668
10.

Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state.

Fu JD, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, Delgado-Olguin P, Ding S, Bruneau BG, Srivastava D.

Stem Cell Reports. 2013 Aug 22;1(3):235-47. doi: 10.1016/j.stemcr.2013.07.005. eCollection 2013.

11.

High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling.

Zhao Y, Londono P, Cao Y, Sharpe EJ, Proenza C, O'Rourke R, Jones KL, Jeong MY, Walker LA, Buttrick PM, McKinsey TA, Song K.

Nat Commun. 2015 Sep 10;6:8243. doi: 10.1038/ncomms9243.

12.

Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells.

Al-Maqtari T, Hong KU, Vajravelu BN, Moktar A, Cao P, Moore JB 4th, Bolli R.

PLoS One. 2017 Mar 29;12(3):e0174242. doi: 10.1371/journal.pone.0174242. eCollection 2017.

13.

Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors.

Takeuchi JK, Bruneau BG.

Nature. 2009 Jun 4;459(7247):708-11. doi: 10.1038/nature08039. Epub 2009 Apr 26.

14.

Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming.

Wang L, Liu Z, Yin C, Asfour H, Chen O, Li Y, Bursac N, Liu J, Qian L.

Circ Res. 2015 Jan 16;116(2):237-44. doi: 10.1161/CIRCRESAHA.116.305547. Epub 2014 Nov 21.

15.

Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.

Yamakawa H, Muraoka N, Miyamoto K, Sadahiro T, Isomi M, Haginiwa S, Kojima H, Umei T, Akiyama M, Kuishi Y, Kurokawa J, Furukawa T, Fukuda K, Ieda M.

Stem Cell Reports. 2015 Dec 8;5(6):1128-42. doi: 10.1016/j.stemcr.2015.10.019. Epub 2015 Nov 25.

16.

Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro.

Qian L, Berry EC, Fu JD, Ieda M, Srivastava D.

Nat Protoc. 2013 Jun;8(6):1204-15. doi: 10.1038/nprot.2013.067. Epub 2013 May 30.

PMID:
23722259
17.

MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.

Muraoka N, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Isomi M, Nakashima H, Akiyama M, Wada R, Inagawa K, Nishiyama T, Kaneda R, Fukuda T, Takeda S, Tohyama S, Hashimoto H, Kawamura Y, Goshima N, Aeba R, Yamagishi H, Fukuda K, Ieda M.

EMBO J. 2014 Jul 17;33(14):1565-81. doi: 10.15252/embj.201387605. Epub 2014 Jun 11.

18.

Islet-1 may function as an assistant factor for histone acetylation and regulation of cardiac development-related transcription factor Mef2c expression.

Yu Z, Kong J, Pan B, Sun H, Lv T, Zhu J, Huang G, Tian J.

PLoS One. 2013 Oct 17;8(10):e77690. doi: 10.1371/journal.pone.0077690. eCollection 2013.

19.

Conditional mutagenesis of the murine serum response factor gene blocks cardiogenesis and the transcription of downstream gene targets.

Niu Z, Yu W, Zhang SX, Barron M, Belaguli NS, Schneider MD, Parmacek M, Nordheim A, Schwartz RJ.

J Biol Chem. 2005 Sep 16;280(37):32531-8. Epub 2005 May 31.

20.

Induction of human cardiomyocyte-like cells from fibroblasts by defined factors.

Wada R, Muraoka N, Inagawa K, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Kaneda R, Suzuki T, Kamiya K, Tohyama S, Yuasa S, Kokaji K, Aeba R, Yozu R, Yamagishi H, Kitamura T, Fukuda K, Ieda M.

Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12667-72. doi: 10.1073/pnas.1304053110. Epub 2013 Jul 16.

Supplemental Content

Support Center