Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 150

1.

Effects of ligand modification and protonation on metal oxime hydrogen evolution electrocatalysts.

Solis BH, Yu Y, Hammes-Schiffer S.

Inorg Chem. 2013 Jun 17;52(12):6994-9. doi: 10.1021/ic400490y. Epub 2013 May 23.

PMID:
23701462
2.

A computational study of the mechanism of hydrogen evolution by cobalt(diimine-dioxime) catalysts.

Bhattacharjee A, Andreiadis ES, Chavarot-Kerlidou M, Fontecave M, Field MJ, Artero V.

Chemistry. 2013 Nov 4;19(45):15166-74. doi: 10.1002/chem.201301860. Epub 2013 Sep 17.

PMID:
24105795
3.

Hydrogen evolution catalyzed by cobalt diimine-dioxime complexes.

Kaeffer N, Chavarot-Kerlidou M, Artero V.

Acc Chem Res. 2015 May 19;48(5):1286-95. doi: 10.1021/acs.accounts.5b00058. Epub 2015 May 5.

4.

Computational Study of Fluorinated Diglyoxime-Iron Complexes: Tuning the Electrocatalytic Pathways for Hydrogen Evolution.

Harshan AK, Solis BH, Winkler JR, Gray HB, Hammes-Schiffer S.

Inorg Chem. 2016 Mar 21;55(6):2934-40. doi: 10.1021/acs.inorgchem.5b02857. Epub 2016 Mar 4.

PMID:
26943883
5.

Computational study of anomalous reduction potentials for hydrogen evolution catalyzed by cobalt dithiolene complexes.

Solis BH, Hammes-Schiffer S.

J Am Chem Soc. 2012 Sep 19;134(37):15253-6. Epub 2012 Sep 10.

PMID:
22954257
6.

Theoretical analysis of mechanistic pathways for hydrogen evolution catalyzed by cobaloximes.

Solis BH, Hammes-Schiffer S.

Inorg Chem. 2011 Nov 7;50(21):11252-62. doi: 10.1021/ic201842v. Epub 2011 Sep 26.

PMID:
21942543
7.

Substituent effects on cobalt diglyoxime catalysts for hydrogen evolution.

Solis BH, Hammes-Schiffer S.

J Am Chem Soc. 2011 Nov 30;133(47):19036-9. doi: 10.1021/ja208091e. Epub 2011 Nov 3.

PMID:
22032414
8.

Kinetics of electron transfer reactions of H2-evolving cobalt diglyoxime catalysts.

Dempsey JL, Winkler JR, Gray HB.

J Am Chem Soc. 2010 Jan 27;132(3):1060-5. doi: 10.1021/ja9080259.

PMID:
20043639
9.

Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.

Rakowski DuBois M, DuBois DL.

Acc Chem Res. 2009 Dec 21;42(12):1974-82. doi: 10.1021/ar900110c.

PMID:
19645445
10.

Structural diversity in manganese, iron and cobalt complexes of the ditopic 1,2-bis(2,2'-bipyridyl-6-yl)ethyne ligand and observation of epoxidation and catalase activity of manganese compounds.

Madhu V, Ekambaram B, Shimon LJ, Diskin Y, Leitus G, Neumann R.

Dalton Trans. 2010 Aug 21;39(31):7266-75. doi: 10.1039/b925129d. Epub 2010 Jun 25.

PMID:
20582360
11.

Hydrogen generation catalyzed by fluorinated diglyoxime-iron complexes at low overpotentials.

Rose MJ, Gray HB, Winkler JR.

J Am Chem Soc. 2012 May 23;134(20):8310-3. doi: 10.1021/ja300534r. Epub 2012 May 14.

PMID:
22583071
12.

pH-dependent reduction potentials and proton-coupled electron transfer mechanisms in hydrogen-producing nickel molecular electrocatalysts.

Horvath S, Fernandez LE, Appel AM, Hammes-Schiffer S.

Inorg Chem. 2013 Apr 1;52(7):3643-52. doi: 10.1021/ic302056j. Epub 2013 Mar 11.

PMID:
23477912
13.

Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages.

Jacques PA, Artero V, P├ęcaut J, Fontecave M.

Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20627-32. doi: 10.1073/pnas.0907775106. Epub 2009 Nov 30.

14.

Ligand versus metal protonation of an iron hydrogenase active site mimic.

Eilers G, Schwartz L, Stein M, Zampella G, de Gioia L, Ott S, Lomoth R.

Chemistry. 2007;13(25):7075-84.

PMID:
17566128
15.

Hydrogen evolution catalyzed by cobaloximes.

Dempsey JL, Brunschwig BS, Winkler JR, Gray HB.

Acc Chem Res. 2009 Dec 21;42(12):1995-2004. doi: 10.1021/ar900253e.

PMID:
19928840
16.

Electrocatalytic hydrogen evolution in acidic water with molecular cobalt tetraazamacrocycles.

McCrory CC, Uyeda C, Peters JC.

J Am Chem Soc. 2012 Feb 15;134(6):3164-70. doi: 10.1021/ja210661k. Epub 2012 Feb 6.

PMID:
22280515
17.

Metal-polypyridyl catalysts for electro- and photochemical reduction of water to hydrogen.

Zee DZ, Chantarojsiri T, Long JR, Chang CJ.

Acc Chem Res. 2015 Jul 21;48(7):2027-36. doi: 10.1021/acs.accounts.5b00082. Epub 2015 Jun 23.

18.

A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.

De La Cruz C, Sheppard N.

Spectrochim Acta A Mol Biomol Spectrosc. 2011 Jan;78(1):7-28. doi: 10.1016/j.saa.2010.08.001. Epub 2010 Aug 17.

PMID:
21123107
19.

The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: iron hydrogenase model complexes.

Mejia-Rodriguez R, Chong D, Reibenspies JH, Soriaga MP, Darensbourg MY.

J Am Chem Soc. 2004 Sep 29;126(38):12004-14.

PMID:
15382935
20.

Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.

Jensen MP, Lange SJ, Mehn MP, Que EL, Que L Jr.

J Am Chem Soc. 2003 Feb 26;125(8):2113-28.

PMID:
12590539

Supplemental Content

Support Center