Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 81

1.

Clinical adjuvant combinations stimulate potent B-cell responses in vitro by activating dermal dendritic cells.

Matthews K, Chung NP, Klasse PJ, Moutaftsi M, Carter D, Salazar AM, Reed SG, Sanders RW, Moore JP.

PLoS One. 2013 May 20;8(5):e63785. doi: 10.1371/journal.pone.0063785. Print 2013.

2.

Potent induction of antibody-secreting B cells by human dermal-derived CD14+ dendritic cells triggered by dual TLR ligation.

Matthews K, Chung NP, Klasse PJ, Moore JP, Sanders RW.

J Immunol. 2012 Dec 15;189(12):5729-44. doi: 10.4049/jimmunol.1200601. Epub 2012 Nov 16.

3.

Human langerhans cells are more efficient than CD14(-)CD1c(+) dermal dendritic cells at priming naive CD4(+) T cells.

Furio L, Briotet I, Journeaux A, Billard H, Péguet-Navarro J.

J Invest Dermatol. 2010 May;130(5):1345-54. doi: 10.1038/jid.2009.424. Epub 2010 Jan 28.

4.

Toll-like receptor agonists shape the immune responses to a mannose receptor-targeted cancer vaccine.

He LZ, Weidlick J, Sisson C, Marsh HC, Keler T.

Cell Mol Immunol. 2015 Nov;12(6):719-28. doi: 10.1038/cmi.2014.100. Epub 2014 Oct 27.

6.

Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation.

Martins KA, Steffens JT, van Tongeren SA, Wells JB, Bergeron AA, Dickson SP, Dye JM, Salazar AM, Bavari S.

PLoS One. 2014 Feb 24;9(2):e89735. doi: 10.1371/journal.pone.0089735. eCollection 2014.

7.

Toll-like receptor ligands modulate dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell responses.

Loré K, Betts MR, Brenchley JM, Kuruppu J, Khojasteh S, Perfetto S, Roederer M, Seder RA, Koup RA.

J Immunol. 2003 Oct 15;171(8):4320-8.

8.

Subcutaneous cholera toxin exposure induces potent CD103⁺ dermal dendritic cell activation and migration.

Apte SH, Redmond AM, Groves PL, Schussek S, Pattinson DJ, Doolan DL.

Eur J Immunol. 2013 Oct;43(10):2707-17. doi: 10.1002/eji.201343475. Epub 2013 Sep 1.

9.

Differential capacity of human skin dendritic cells to polarize CD4+ T cells into IL-17, IL-21 and IL-22 producing cells.

Penel-Sotirakis K, Simonazzi E, Péguet-Navarro J, Rozières A.

PLoS One. 2012;7(11):e45680. doi: 10.1371/journal.pone.0045680. Epub 2012 Nov 30.

10.

Combined Toll-like receptor agonists synergistically increase production of inflammatory cytokines in human neonatal dendritic cells.

Krumbiegel D, Zepp F, Meyer CU.

Hum Immunol. 2007 Oct;68(10):813-22. Epub 2007 Aug 29.

PMID:
17961769
11.

TLR ligand-dependent activation of naive CD4 T cells by plasmacytoid dendritic cells is impaired in hepatitis C virus infection.

Yonkers NL, Rodriguez B, Milkovich KA, Asaad R, Lederman MM, Heeger PS, Anthony DD.

J Immunol. 2007 Apr 1;178(7):4436-44.

12.

Phenotypic and Functional Properties of Human Steady State CD14+ and CD1a+ Antigen Presenting Cells and Epidermal Langerhans Cells.

Fehres CM, Bruijns SC, Sotthewes BN, Kalay H, Schaffer L, Head SR, de Gruijl TD, Garcia-Vallejo JJ, van Kooyk Y.

PLoS One. 2015 Nov 25;10(11):e0143519. doi: 10.1371/journal.pone.0143519. eCollection 2015.

13.

Toll-like receptor 7-induced naive human B-cell differentiation and immunoglobulin production.

Glaum MC, Narula S, Song D, Zheng Y, Anderson AL, Pletcher CH, Levinson AI.

J Allergy Clin Immunol. 2009 Jan;123(1):224-230.e4. doi: 10.1016/j.jaci.2008.09.018. Epub 2008 Nov 7.

PMID:
18995892
15.

Intradermal delivery of TLR agonists in a human explant skin model: preferential activation of migratory dendritic cells by polyribosinic-polyribocytidylic acid and peptidoglycans.

Oosterhoff D, Heusinkveld M, Lougheed SM, Kosten I, Lindstedt M, Bruijns SC, van Es T, van Kooyk Y, van der Burg SH, de Gruijl TD.

J Immunol. 2013 Apr 1;190(7):3338-45. doi: 10.4049/jimmunol.1200598. Epub 2013 Mar 6.

16.

Using distinct molecular signatures of human monocytes and dendritic cells to predict adjuvant activity and pyrogenicity of TLR agonists.

Kamgang RK, Ramos I, Rodrigues Duarte L, Ghielmetti M, Freudenberg M, Dahinden C, Padovan E.

Med Microbiol Immunol. 2008 Dec;197(4):369-79. doi: 10.1007/s00430-008-0081-6. Epub 2008 Feb 19.

17.

Dendritic cell-targeted protein vaccines: a novel approach to induce T-cell immunity.

Trumpfheller C, Longhi MP, Caskey M, Idoyaga J, Bozzacco L, Keler T, Schlesinger SJ, Steinman RM.

J Intern Med. 2012 Feb;271(2):183-92. doi: 10.1111/j.1365-2796.2011.02496.x. Epub 2012 Jan 4. Review.

18.

Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans.

Caskey M, Lefebvre F, Filali-Mouhim A, Cameron MJ, Goulet JP, Haddad EK, Breton G, Trumpfheller C, Pollak S, Shimeliovich I, Duque-Alarcon A, Pan L, Nelkenbaum A, Salazar AM, Schlesinger SJ, Steinman RM, Sékaly RP.

J Exp Med. 2011 Nov 21;208(12):2357-66. doi: 10.1084/jem.20111171. Epub 2011 Nov 7.

19.

Combination of poly I:C and Pam3CSK4 enhances activation of B cells in vitro and boosts antibody responses to protein vaccines in vivo.

Weir GM, Karkada M, Hoskin D, Stanford MM, MacDonald L, Mansour M, Liwski RS.

PLoS One. 2017 Jun 29;12(6):e0180073. doi: 10.1371/journal.pone.0180073. eCollection 2017.

20.

Generation of Th1-polarizing dendritic cells using the TLR7/8 agonist CL075.

Spranger S, Javorovic M, Bürdek M, Wilde S, Mosetter B, Tippmer S, Bigalke I, Geiger C, Schendel DJ, Frankenberger B.

J Immunol. 2010 Jul 1;185(1):738-47. doi: 10.4049/jimmunol.1000060. Epub 2010 May 28.

Supplemental Content

Support Center