Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 150

1.

Hierarchical CuO nanoflowers: water-required synthesis and their application in a nonenzymatic glucose biosensor.

Sun S, Zhang X, Sun Y, Yang S, Song X, Yang Z.

Phys Chem Chem Phys. 2013 Jul 14;15(26):10904-13. doi: 10.1039/c3cp50922b. Epub 2013 May 23.

PMID:
23698563
2.

Facile water-assisted synthesis of cupric oxide nanourchins and their application as nonenzymatic glucose biosensor.

Sun S, Zhang X, Sun Y, Yang S, Song X, Yang Z.

ACS Appl Mater Interfaces. 2013 May 22;5(10):4429-37. doi: 10.1021/am400858j. Epub 2013 May 9.

PMID:
23629486
3.

Nanoporous copper oxide ribbon assembly of free-standing nanoneedles as biosensors for glucose.

Sun S, Sun Y, Chen A, Zhang X, Yang Z.

Analyst. 2015 Aug 7;140(15):5205-15. doi: 10.1039/c5an00609k.

PMID:
26057132
4.

Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose.

Meher SK, Rao GR.

Nanoscale. 2013 Mar 7;5(5):2089-99. doi: 10.1039/c2nr33264g. Epub 2013 Feb 4.

PMID:
23381131
5.

3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection.

Ma Y, Zhao M, Cai B, Wang W, Ye Z, Huang J.

Biosens Bioelectron. 2014 Sep 15;59:384-8. doi: 10.1016/j.bios.2014.03.064. Epub 2014 Apr 13.

PMID:
24755255
6.

Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection.

Song J, Xu L, Zhou C, Xing R, Dai Q, Liu D, Song H.

ACS Appl Mater Interfaces. 2013 Dec 26;5(24):12928-34. doi: 10.1021/am403508f. Epub 2013 Dec 13.

PMID:
24182328
7.

Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2.

Prathap MU, Kaur B, Srivastava R.

J Colloid Interface Sci. 2012 Mar 15;370(1):144-54. doi: 10.1016/j.jcis.2011.12.074. Epub 2012 Jan 8.

PMID:
22284573
8.

A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode.

Jiang LC, Zhang WD.

Biosens Bioelectron. 2010 Feb 15;25(6):1402-7. doi: 10.1016/j.bios.2009.10.038. Epub 2009 Oct 30.

PMID:
19942424
9.

Tailoring CuO nanostructures for enhanced photocatalytic property.

Liu J, Jin J, Deng Z, Huang SZ, Hu ZY, Wang L, Wang C, Chen LH, Li Y, Van Tendeloo G, Su BL.

J Colloid Interface Sci. 2012 Oct 15;384(1):1-9. doi: 10.1016/j.jcis.2012.06.044. Epub 2012 Jun 26.

PMID:
22818959
10.

Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection.

Song MJ, Hwang SW, Whang D.

Talanta. 2010 Mar 15;80(5):1648-52. doi: 10.1016/j.talanta.2009.09.061. Epub 2009 Oct 7.

PMID:
20152391
11.

CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing.

Li C, Yamahara H, Lee Y, Tabata H, Delaunay JJ.

Nanotechnology. 2015 Jul 31;26(30):305503. doi: 10.1088/0957-4484/26/30/305503. Epub 2015 Jul 10.

PMID:
26159235
12.

Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes.

Ahmad R, Vaseem M, Tripathy N, Hahn YB.

Anal Chem. 2013 Nov 5;85(21):10448-54. doi: 10.1021/ac402925r. Epub 2013 Oct 10.

PMID:
24070377
13.

Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications.

Ibupoto ZH, Khun K, Beni V, Liu X, Willander M.

Sensors (Basel). 2013 Jun 20;13(6):7926-38. doi: 10.3390/s130607926.

14.

Spherulitic copper-copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor.

Das G, Tran TQ, Yoon HH.

Int J Nanomedicine. 2015 Aug 27;10 Spec Iss:165-78. doi: 10.2147/IJN.S88317. eCollection 2015.

15.

A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor.

Luo S, Su F, Liu C, Li J, Liu R, Xiao Y, Li Y, Liu X, Cai Q.

Talanta. 2011 Oct 30;86:157-63. doi: 10.1016/j.talanta.2011.08.051. Epub 2011 Sep 1.

PMID:
22063525
16.

Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode.

Luo L, Zhu L, Wang Z.

Bioelectrochemistry. 2012 Dec;88:156-63. doi: 10.1016/j.bioelechem.2012.03.006. Epub 2012 Apr 2.

PMID:
22522031
17.

Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers.

Cao F, Guo S, Ma H, Yang G, Yang S, Gong J.

Talanta. 2011 Oct 30;86:214-20. doi: 10.1016/j.talanta.2011.09.003. Epub 2011 Sep 8.

PMID:
22063533
18.

Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors.

Lu LM, Zhang XB, Shen GL, Yu RQ.

Anal Chim Acta. 2012 Feb 17;715:99-104. doi: 10.1016/j.aca.2011.12.011. Epub 2011 Dec 17.

PMID:
22244173
19.

Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles.

Cao F, Gong J.

Anal Chim Acta. 2012 Apr 20;723:39-44. doi: 10.1016/j.aca.2012.02.036. Epub 2012 Feb 25.

PMID:
22444571
20.

Synthesis of hierarchical three-dimensional copper oxide nanostructures through a biomineralization-inspired approach.

Fei X, Shao Z, Chen X.

Nanoscale. 2013 Sep 7;5(17):7991-7. doi: 10.1039/c3nr01872e.

PMID:
23863944

Supplemental Content

Support Center