Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Visualization of system dynamics using phasegrams.

Herbst CT, Herzel H, Svec JG, Wyman MT, Fitch WT.

J R Soc Interface. 2013 May 22;10(85):20130288. doi: 10.1098/rsif.2013.0288. Print 2013 Aug 6.

2.

Invariant polygons in systems with grazing-sliding.

Szalai R, Osinga HM.

Chaos. 2008 Jun;18(2):023121. doi: 10.1063/1.2904774.

PMID:
18601488
3.

[Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].

Pezard L, Nandrino JL.

Encephale. 2001 May-Jun;27(3):260-8. French.

PMID:
11488256
4.

Transition from amplitude to oscillation death via Turing bifurcation.

Koseska A, Volkov E, Kurths J.

Phys Rev Lett. 2013 Jul 12;111(2):024103. Epub 2013 Jul 10.

PMID:
23889406
5.
6.

Partially controlling transient chaos in the Lorenz equations.

Capeáns R, Sabuco J, Sanjuán MA, Yorke JA.

Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). pii: 20160211. doi: 10.1098/rsta.2016.0211.

PMID:
28115608
7.

Multimodal synchronization of chaos.

Campos E, Urías J, Rulkov NF.

Chaos. 2004 Mar;14(1):48-54.

PMID:
15003044
8.

Chaos suppression in the parametrically driven Lorenz system.

Choe CU, Höhne K, Benner H, Kivshar YS.

Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):036206. Epub 2005 Sep 8.

PMID:
16241547
9.

External periodic driving of large systems of globally coupled phase oscillators.

Antonsen TM Jr, Faghih RT, Girvan M, Ott E, Platig J.

Chaos. 2008 Sep;18(3):037112. doi: 10.1063/1.2952447.

PMID:
19045486
10.

Control of chaos in nonlinear systems with time-periodic coefficients.

Sinha SC, Dávid A.

Philos Trans A Math Phys Eng Sci. 2006 Sep 15;364(1846):2417-32.

11.
12.

Bifurcation of orbits and synchrony in inferior olive neurons.

Lee KW, Singh SN.

J Math Biol. 2012 Sep;65(3):465-91. doi: 10.1007/s00285-011-0466-9. Epub 2011 Sep 7.

PMID:
21898110
13.

Plykin-type attractor in nonautonomous coupled oscillators.

Kuznetsov SP.

Chaos. 2009 Mar;19(1):013114. doi: 10.1063/1.3072777.

PMID:
19334978
14.

A new route to chaos: sequences of topological torus bifurcations.

Spears BK, Szeri AJ.

Chaos. 2005 Sep;15(3):33108.

PMID:
16252982
15.

Manifold structures of unstable periodic orbits and the appearance of periodic windows in chaotic systems.

Kobayashi MU, Saiki Y.

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022904. Epub 2014 Feb 5.

PMID:
25353542
16.

Sudden change from chaos to oscillation death in the Bonhoeffer-van der Pol oscillator under weak periodic perturbation.

Sekikawa M, Shimizu K, Inaba N, Kita H, Endo T, Fujimoto K, Yoshinaga T, Aihara K.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056209. Epub 2011 Nov 10.

PMID:
22181486
17.

Bifurcations analysis of oscillating hypercycles.

Guillamon A, Fontich E, Sardanyés J.

J Theor Biol. 2015 Dec 21;387:23-30. doi: 10.1016/j.jtbi.2015.09.018. Epub 2015 Oct 9.

PMID:
26431772
18.

Stationary oscillation of an impulsive delayed system and its application to chaotic neural networks.

Sun J, Lin H.

Chaos. 2008 Sep;18(3):033127. doi: 10.1063/1.2966113.

PMID:
19045465
19.

Scalings of mixed-mode regimes in a simple polynomial three-variable model of nonlinear dynamical systems.

Khavrus VO, Strizhak PE, Kawczyński AL.

Chaos. 2003 Mar;13(1):112-22.

PMID:
12675416
20.

Cycling chaotic attractors in two models for dynamics with invariant subspaces.

Ashwin P, Rucklidge AM, Sturman R.

Chaos. 2004 Sep;14(3):571-82.

PMID:
15446967

Supplemental Content

Support Center