Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Direct atomic-scale confirmation of three-phase storage mechanism in Li₄Ti₅O₁₂ anodes for room-temperature sodium-ion batteries.

Sun Y, Zhao L, Pan H, Lu X, Gu L, Hu YS, Li H, Armand M, Ikuhara Y, Chen L, Huang X.

Nat Commun. 2013;4:1870. doi: 10.1038/ncomms2878.

PMID:
23695664
2.

Layered P3-NaxCo1/3Ni1/3Mn1/3O2 versus Spinel Li4Ti5O12 as a Positive and a Negative Electrode in a Full Sodium-Lithium Cell.

Ivanova S, Zhecheva E, Kukeva R, Nihtianova D, Mihaylov L, Atanasova G, Stoyanova R.

ACS Appl Mater Interfaces. 2016 Jul 13;8(27):17321-33. doi: 10.1021/acsami.6b05075. Epub 2016 Jun 28.

PMID:
27315402
3.

A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries.

Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu YS, Li H, Yang XQ, Chen L, Huang X.

Nat Commun. 2013;4:2365. doi: 10.1038/ncomms3365. Erratum in: Nat Commun. 2013;4:2858.

PMID:
23978932
4.

A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation.

Yu X, Pan H, Wan W, Ma C, Bai J, Meng Q, Ehrlich SN, Hu YS, Yang XQ.

Nano Lett. 2013 Oct 9;13(10):4721-7. doi: 10.1021/nl402263g. Epub 2013 Sep 24.

PMID:
24053585
5.

Enhancing Sodium-Ion Storage Behaviors in TiNb2O7 by Mechanical Ball Milling.

Huang Y, Li X, Luo J, Wang K, Zhang Q, Qiu Y, Sun S, Liu S, Han J, Huang Y.

ACS Appl Mater Interfaces. 2017 Mar 15;9(10):8696-8703. doi: 10.1021/acsami.6b15887. Epub 2017 Mar 2.

PMID:
28218513
6.

Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries.

Hu M, Jiang Y, Sun W, Wang H, Jin C, Yan M.

ACS Appl Mater Interfaces. 2014 Nov 12;6(21):19449-55. doi: 10.1021/am505505m. Epub 2014 Oct 31.

PMID:
25329758
7.

Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries.

Xu GL, Chen Z, Zhong GM, Liu Y, Yang Y, Ma T, Ren Y, Zuo X, Wu XH, Zhang X, Amine K.

Nano Lett. 2016 Jun 8;16(6):3955-65. doi: 10.1021/acs.nanolett.6b01777. Epub 2016 May 27.

PMID:
27222911
8.

Comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries.

Ma R, Shao L, Wu K, Shui M, Wang D, Pan J, Long N, Ren Y, Shu J.

ACS Appl Mater Interfaces. 2013 Sep 11;5(17):8615-27. doi: 10.1021/am402132u. Epub 2013 Aug 21.

PMID:
23927499
9.

An ultrastable anode for long-life room-temperature sodium-ion batteries.

Yu H, Ren Y, Xiao D, Guo S, Zhu Y, Qian Y, Gu L, Zhou H.

Angew Chem Int Ed Engl. 2014 Aug 18;53(34):8963-9. doi: 10.1002/anie.201404549. Epub 2014 Jun 24.

PMID:
24962822
10.

Tunnel-Structured KxTiO2 Nanorods by in Situ Carbothermal Reduction as a Long Cycle and High Rate Anode for Sodium-Ion Batteries.

Zhang Q, Wei Y, Yang H, Su D, Ma Y, Li H, Zhai T.

ACS Appl Mater Interfaces. 2017 Mar 1;9(8):7009-7016. doi: 10.1021/acsami.6b13869. Epub 2017 Feb 15.

PMID:
28157289
11.

Two-Dimensional SnO Anodes with a Tunable Number of Atomic Layers for Sodium Ion Batteries.

Zhang F, Zhu J, Zhang D, Schwingenschlögl U, Alshareef HN.

Nano Lett. 2017 Feb 8;17(2):1302-1311. doi: 10.1021/acs.nanolett.6b05280. Epub 2017 Jan 27.

PMID:
28098459
12.

Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.

Ge H, Hao T, Osgood H, Zhang B, Chen L, Cui L, Song XM, Ogoke O, Wu G.

ACS Appl Mater Interfaces. 2016 Apr 13;8(14):9162-9. doi: 10.1021/acsami.6b01644. Epub 2016 Mar 31.

PMID:
27015357
13.

NaAlTi3O8, A Novel Anode Material for Sodium Ion Battery.

Ma X, An K, Bai J, Chen H.

Sci Rep. 2017 Mar 13;7(1):162. doi: 10.1038/s41598-017-00202-y.

14.

Excess lithium storage and charge compensation in nanoscale Li(4+x)Ti5O12.

Wang F, Wu L, Ma C, Su D, Zhu Y, Graetz J.

Nanotechnology. 2013 Oct 25;24(42):424006. doi: 10.1088/0957-4484/24/42/424006. Epub 2013 Sep 25.

PMID:
24067496
15.

One-Dimensional Rod-Like Sb₂S₃-Based Anode for High-Performance Sodium-Ion Batteries.

Hou H, Jing M, Huang Z, Yang Y, Zhang Y, Chen J, Wu Z, Ji X.

ACS Appl Mater Interfaces. 2015 Sep 2;7(34):19362-9. doi: 10.1021/acsami.5b05509. Epub 2015 Aug 24.

PMID:
26284385
16.

Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.

Hou H, Jing M, Yang Y, Zhu Y, Fang L, Song W, Pan C, Yang X, Ji X.

ACS Appl Mater Interfaces. 2014 Sep 24;6(18):16189-96. doi: 10.1021/am504310k. Epub 2014 Aug 29.

PMID:
25140456
17.

Controlling Solid-Electrolyte-Interphase Layer by Coating P-Type Semiconductor NiOx on Li4Ti5O12 for High-Energy-Density Lithium-Ion Batteries.

Jo MR, Lee GH, Kang YM.

ACS Appl Mater Interfaces. 2015 Dec 23;7(50):27934-9. doi: 10.1021/acsami.5b10207. Epub 2015 Dec 11.

PMID:
26619966
18.

Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries.

Sun Y, Tang J, Zhang K, Yuan J, Li J, Zhu DM, Ozawa K, Qin LC.

Nanoscale. 2017 Feb 16;9(7):2585-2595. doi: 10.1039/c6nr07650e.

PMID:
28150823
19.

Carbon Encapsulated Tin Oxide Nanocomposites: An Efficient Anode for High Performance Sodium-Ion Batteries.

Kalubarme RS, Lee JY, Park CJ.

ACS Appl Mater Interfaces. 2015 Aug 12;7(31):17226-37. doi: 10.1021/acsami.5b04178. Epub 2015 Jul 31.

PMID:
26186401
20.

Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries.

Qian J, Xiong Y, Cao Y, Ai X, Yang H.

Nano Lett. 2014;14(4):1865-9. doi: 10.1021/nl404637q. Epub 2014 Mar 12.

PMID:
24611662

Supplemental Content

Support Center