Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

Quantitative determination of scattering mechanism in large-area graphene on conventional and SAM-functionalized substrates at room temperature.

Chen K, Wan X, Liu D, Kang Z, Xie W, Chen J, Miao Q, Xu J.

Nanoscale. 2013 Jul 7;5(13):5784-93. doi: 10.1039/c3nr00972f. Epub 2013 May 20.

PMID:
23689798
2.

Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates.

Chen SY, Ho PH, Shiue RJ, Chen CW, Wang WH.

Nano Lett. 2012 Feb 8;12(2):964-9. doi: 10.1021/nl204036d. Epub 2012 Jan 20.

PMID:
22224857
3.

Manipulating graphene mobility and charge neutral point with ligand-bound nanoparticles as charge reservoir.

Wang D, Liu X, He L, Yin Y, Wu D, Shi J.

Nano Lett. 2010 Dec 8;10(12):4989-93. doi: 10.1021/nl103103z. Epub 2010 Nov 11.

PMID:
21070006
4.

Mapping the density of scattering centers limiting the electron mean free path in graphene.

Giannazzo F, Sonde S, Nigro RL, Rimini E, Raineri V.

Nano Lett. 2011 Nov 9;11(11):4612-8. doi: 10.1021/nl2020922. Epub 2011 Oct 12.

PMID:
21981146
5.

How good can CVD-grown monolayer graphene be?

Chen B, Huang H, Ma X, Huang L, Zhang Z, Peng LM.

Nanoscale. 2014 Dec 21;6(24):15255-61. doi: 10.1039/c4nr05664g. Epub 2014 Nov 10.

PMID:
25381813
6.

Exploring carrier transport phenomena in a CVD-assembled graphene FET on hexagonal boron nitride.

Kim E, Jai N, Jacobs-Gedri R, Xu Y, Yu B.

Nanotechnology. 2012 Mar 30;23(12):125706. doi: 10.1088/0957-4484/23/12/125706.

PMID:
22414953
7.

Quantitative Analysis of Scattering Mechanisms in Highly Crystalline CVD MoS2 through a Self-Limited Growth Strategy by Interface Engineering.

Wan X, Chen K, Xie W, Wen J, Chen H, Xu JB.

Small. 2016 Jan 27;12(4):438-45. doi: 10.1002/smll.201502392. Epub 2015 Dec 10.

PMID:
26663902
8.

Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate.

Chamlagain B, Li Q, Ghimire NJ, Chuang HJ, Perera MM, Tu H, Xu Y, Pan M, Xiao D, Yan J, Mandrus D, Zhou Z.

ACS Nano. 2014 May 27;8(5):5079-88. doi: 10.1021/nn501150r. Epub 2014 Apr 16. Erratum in: ACS Nano. 2014 Aug 26;8(8):8710. Xaio, Di [corrected to Xiao, Di].

PMID:
24730685
9.

Direct imaging of charged impurity density in common graphene substrates.

Burson KM, Cullen WG, Adam S, Dean CR, Watanabe K, Taniguchi T, Kim P, Fuhrer MS.

Nano Lett. 2013 Aug 14;13(8):3576-80. doi: 10.1021/nl4012529. Epub 2013 Aug 1.

PMID:
23879288
10.

Organic-Inorganic Heterointerfaces for Ultrasensitive Detection of Ultraviolet Light.

Shao D, Gao J, Chow P, Sun H, Xin G, Sharma P, Lian J, Koratkar NA, Sawyer S.

Nano Lett. 2015 Jun 10;15(6):3787-92. doi: 10.1021/acs.nanolett.5b00380. Epub 2015 May 7.

PMID:
25938811
11.

Defect engineering as a versatile route to estimate various scattering mechanisms in monolayer graphene on solid substrates.

Srivastava PK, Ghosh S.

Nanoscale. 2015 Oct 14;7(38):16079-86. doi: 10.1039/c5nr04293c. Epub 2015 Sep 15.

PMID:
26372472
12.

Intrinsic and extrinsic performance limits of graphene devices on SiO2.

Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS.

Nat Nanotechnol. 2008 Apr;3(4):206-9. doi: 10.1038/nnano.2008.58. Epub 2008 Mar 23.

PMID:
18654504
13.

Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns.

Wang B, Huang M, Tao L, Lee SH, Jang AR, Li BW, Shin HS, Akinwande D, Ruoff RS.

ACS Nano. 2016 Jan 26;10(1):1404-10. doi: 10.1021/acsnano.5b06842. Epub 2016 Jan 5.

PMID:
26701198
14.

Substrate engineering by hexagonal boron nitride/SiO2 for hysteresis-free graphene FETs and large-scale graphene p-n junctions.

Xu H, Wu J, Chen Y, Zhang H, Zhang J.

Chem Asian J. 2013 Oct;8(10):2446-52. doi: 10.1002/asia.201300505. Epub 2013 Jul 9.

PMID:
23840025
15.

A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment.

Wu Z, Guo Y, Guo Y, Huang R, Xu S, Song J, Lu H, Lin Z, Han Y, Li H, Han T, Lin J, Wu Y, Long G, Cai Y, Cheng C, Su D, Robertson J, Wang N.

Nanoscale. 2016 Feb 7;8(5):2594-600. doi: 10.1039/c5nr05393e.

PMID:
26499039
16.

Infrared conductivity and carrier mobility of large scale graphene on various substrates.

Kim JY, Rho JH, Lee C, Bae S, Kim SJ, Kim KS, Hong BH, Choi EJ.

J Nanosci Nanotechnol. 2012 Jul;12(7):5816-9.

PMID:
22966661
17.

Carrier control of graphene driven by the proximity effect of functionalized self-assembled monolayers.

Yokota K, Takai K, Enoki T.

Nano Lett. 2011 Sep 14;11(9):3669-75. doi: 10.1021/nl201607t. Epub 2011 Aug 29.

PMID:
21848296
18.

Carrier-carrier scattering and negative dynamic conductivity in pumped graphene.

Svintsov D, Ryzhii V, Satou A, Otsuji T, Vyurkov V.

Opt Express. 2014 Aug 25;22(17):19873-86. doi: 10.1364/OE.22.019873.

PMID:
25321198
19.

Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition.

Chan J, Venugopal A, Pirkle A, McDonnell S, Hinojos D, Magnuson CW, Ruoff RS, Colombo L, Wallace RM, Vogel EM.

ACS Nano. 2012 Apr 24;6(4):3224-9. doi: 10.1021/nn300107f. Epub 2012 Mar 12.

PMID:
22390298
20.

Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors.

Ito Y, Virkar AA, Mannsfeld S, Oh JH, Toney M, Locklin J, Bao Z.

J Am Chem Soc. 2009 Jul 8;131(26):9396-404. doi: 10.1021/ja9029957.

PMID:
19518097

Supplemental Content

Support Center