Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 306

1.

Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy.

Tian Q, Hu J, Zhu Y, Zou R, Chen Z, Yang S, Li R, Su Q, Han Y, Liu X.

J Am Chem Soc. 2013 Jun 12;135(23):8571-7. doi: 10.1021/ja4013497. Epub 2013 May 30.

PMID:
23687972
2.

A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy.

Xiao Q, Zheng X, Bu W, Ge W, Zhang S, Chen F, Xing H, Ren Q, Fan W, Zhao K, Hua Y, Shi J.

J Am Chem Soc. 2013 Sep 4;135(35):13041-8. doi: 10.1021/ja404985w. Epub 2013 Aug 21.

PMID:
23924214
3.

Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents.

Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Lévy M, Bacri JC, Bazzi R, Brougham DF, Wilhelm C, Gazeau F.

ACS Nano. 2012 Dec 21;6(12):10935-49. doi: 10.1021/nn304477s. Epub 2012 Nov 29.

PMID:
23167525
4.

Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors.

Li J, Hu Y, Yang J, Wei P, Sun W, Shen M, Zhang G, Shi X.

Biomaterials. 2015 Jan;38:10-21. doi: 10.1016/j.biomaterials.2014.10.065. Epub 2014 Nov 9.

PMID:
25457979
5.

Multifunctional polypyrrole@Fe(3)O(4) nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy.

Tian Q, Wang Q, Yao KX, Teng B, Zhang J, Yang S, Han Y.

Small. 2014 Mar 26;10(6):1063-8. doi: 10.1002/smll.201302042. Epub 2013 Nov 27.

PMID:
24285365
6.

Gadolinium-chelate functionalized copper sulphide as a nanotheranostic agent for MR imaging and photothermal destruction of cancer cells.

Zhang S, Zha Z, Yue X, Liang X, Dai Z.

Chem Commun (Camb). 2013 Aug 4;49(60):6776-8. doi: 10.1039/c3cc43440k.

PMID:
23783843
7.

Multifunctional Fe3O4@P(St/MAA)@chitosan@Au core/shell nanoparticles for dual imaging and photothermal therapy.

Wang X, Liu H, Chen D, Meng X, Liu T, Fu C, Hao N, Zhang Y, Wu X, Ren J, Tang F.

ACS Appl Mater Interfaces. 2013 Jun 12;5(11):4966-71. doi: 10.1021/am400721s. Epub 2013 May 30.

PMID:
23683167
8.

Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance.

Fu G, Liu W, Li Y, Jin Y, Jiang L, Liang X, Feng S, Dai Z.

Bioconjug Chem. 2014 Sep 17;25(9):1655-63. doi: 10.1021/bc500279w. Epub 2014 Aug 15.

PMID:
25109612
9.

Ultrasmall Cu2-x S Nanodots for Highly Efficient Photoacoustic Imaging-Guided Photothermal Therapy.

Mou J, Li P, Liu C, Xu H, Song L, Wang J, Zhang K, Chen Y, Shi J, Chen H.

Small. 2015 May 20;11(19):2275-83. doi: 10.1002/smll.201403249. Epub 2015 Jan 16.

PMID:
25641784
10.

Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging.

Das M, Mishra D, Dhak P, Gupta S, Maiti TK, Basak A, Pramanik P.

Small. 2009 Dec;5(24):2883-93. doi: 10.1002/smll.200901219.

PMID:
19856326
11.

Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer.

Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z.

Biomaterials. 2014 Jul;35(22):5814-21. doi: 10.1016/j.biomaterials.2014.04.005. Epub 2014 Apr 17.

PMID:
24746962
12.

Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T1- and T2-weighted magnetic resonance imaging.

Hu F, Jia Q, Li Y, Gao M.

Nanotechnology. 2011 Jun 17;22(24):245604. doi: 10.1088/0957-4484/22/24/245604. Epub 2011 Apr 21.

PMID:
21508500
13.

Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy.

Zhou Z, Sun Y, Shen J, Wei J, Yu C, Kong B, Liu W, Yang H, Yang S, Wang W.

Biomaterials. 2014 Aug;35(26):7470-8. doi: 10.1016/j.biomaterials.2014.04.063. Epub 2014 Jun 2.

PMID:
24881997
14.

Dual functional AuNRs@MnMEIOs nanoclusters for magnetic resonance imaging and photothermal therapy.

Chuang YC, Lin CJ, Lo SF, Wang JL, Tzou SC, Yuan SS, Wang YM.

Biomaterials. 2014 May;35(16):4678-87. doi: 10.1016/j.biomaterials.2014.02.026. Epub 2014 Mar 7.

PMID:
24613648
15.

LaB6 nanoparticles with carbon-doped silica coating for fluorescence imaging and near-IR photothermal therapy of cancer cells.

Lai BH, Chen DH.

Acta Biomater. 2013 Jul;9(7):7556-63. doi: 10.1016/j.actbio.2013.03.034. Epub 2013 Mar 28.

PMID:
23542555
16.

Multifunctional 1D magnetic and fluorescent nanoparticle chains for enhanced MRI, fluorescent cell imaging, and combined photothermal/chemotherapy.

Wang H, Mararenko A, Cao G, Gai Z, Hong K, Banerjee P, Zhou S.

ACS Appl Mater Interfaces. 2014 Sep 10;6(17):15309-17. doi: 10.1021/am503777k. Epub 2014 Aug 22.

PMID:
25127411
17.

Appropriate Size of Magnetic Nanoparticles for Various Bioapplications in Cancer Diagnostics and Therapy.

Guo X, Wu Z, Li W, Wang Z, Li Q, Kong F, Zhang H, Zhu X, Du YP, Jin Y, Du Y, You J.

ACS Appl Mater Interfaces. 2016 Feb 10;8(5):3092-106. doi: 10.1021/acsami.5b10352. Epub 2016 Jan 27.

PMID:
26754032
18.

Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles.

Yang H, Zhuang Y, Sun Y, Dai A, Shi X, Wu D, Li F, Hu H, Yang S.

Biomaterials. 2011 Jul;32(20):4584-93. doi: 10.1016/j.biomaterials.2011.03.018. Epub 2011 Mar 31.

PMID:
21458063
19.
20.

Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging.

Wang Y, Ji L, Zhang B, Yin P, Qiu Y, Song D, Zhou J, Li Q.

Nanotechnology. 2013 May 3;24(17):175101. doi: 10.1088/0957-4484/24/17/175101. Epub 2013 Apr 4.

PMID:
23558298

Supplemental Content

Support Center