Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 149

1.

Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications.

Pedraza E, Brady AC, Fraker CA, Stabler CL.

J Biomater Sci Polym Ed. 2013;24(9):1041-56. doi: 10.1080/09205063.2012.735097. Epub 2012 Oct 31.

2.

An oxygen plasma treated poly(dimethylsiloxane) bioscaffold coated with polydopamine for stem cell therapy.

Razavi M, Thakor AS.

J Mater Sci Mater Med. 2018 May 3;29(5):54. doi: 10.1007/s10856-018-6077-x.

3.

The use of zein and Shuanghuangbu for periodontal tissue engineering.

Yan-Zhi X, Jing-Jing W, Chen YP, Liu J, Li N, Yang FY.

Int J Oral Sci. 2010 Sep;2(3):142-8. doi: 10.4248/IJOS10056.

4.

Inorganic-organic hybrid scaffolds for osteochondral regeneration.

Munoz-Pinto DJ, McMahon RE, Kanzelberger MA, Jimenez-Vergara AC, Grunlan MA, Hahn MS.

J Biomed Mater Res A. 2010 Jul;94(1):112-21. doi: 10.1002/jbm.a.32695.

PMID:
20128006
5.

Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens.

Johnson T, Bahrampourian R, Patel A, Mequanint K.

Biomed Mater Eng. 2010;20(2):107-18. doi: 10.3233/BME-2010-0621.

PMID:
20592448
6.

Engineering the microstructure of electrospun fibrous scaffolds by microtopography.

Cheng Q, Lee BL, Komvopoulos K, Li S.

Biomacromolecules. 2013 May 13;14(5):1349-60. doi: 10.1021/bm302000n. Epub 2013 Apr 25.

7.

Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition.

Matsiko A, Gleeson JP, O'Brien FJ.

Tissue Eng Part A. 2015 Feb;21(3-4):486-97. doi: 10.1089/ten.TEA.2013.0545. Epub 2014 Nov 7.

PMID:
25203687
8.

A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering.

McHugh KJ, Tao SL, Saint-Geniez M.

J Mater Sci Mater Med. 2013 Jul;24(7):1659-70. doi: 10.1007/s10856-013-4934-1. Epub 2013 Apr 27.

9.

Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.

Chung EJ, Sugimoto M, Koh JL, Ameer GA.

Tissue Eng Part C Methods. 2012 Feb;18(2):113-21. doi: 10.1089/ten.TEC.2011.0289. Epub 2011 Dec 22.

PMID:
21933018
10.

Effect of scaffold architecture and pore size on smooth muscle cell growth.

Lee M, Wu BM, Dunn JC.

J Biomed Mater Res A. 2008 Dec 15;87(4):1010-6. doi: 10.1002/jbm.a.31816.

PMID:
18257081
11.

Comparison of cellular proliferation on dense and porous PCL scaffolds.

Saşmazel HT, Gümüşderelioğlu M, Gürpinar A, Onur MA.

Biomed Mater Eng. 2008;18(3):119-28.

PMID:
18725692
12.

Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications.

Nie L, Chen D, Suo J, Zou P, Feng S, Yang Q, Yang S, Ye S.

Colloids Surf B Biointerfaces. 2012 Dec 1;100:169-76. doi: 10.1016/j.colsurfb.2012.04.046. Epub 2012 May 31.

PMID:
22766294
13.

Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering.

Luo Y, Wu C, Lode A, Gelinsky M.

Biofabrication. 2013 Mar;5(1):015005. doi: 10.1088/1758-5082/5/1/015005. Epub 2012 Dec 11.

PMID:
23228963
14.

Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing.

Reed S, Lau G, Delattre B, Lopez DD, Tomsia AP, Wu BM.

Biofabrication. 2016 Jan 7;8(1):015003. doi: 10.1088/1758-5090/8/1/015003.

PMID:
26741113
15.

Degradable, thermo-sensitive poly(N-isopropyl acrylamide)-based scaffolds with controlled porosity for tissue engineering applications.

Galperin A, Long TJ, Ratner BD.

Biomacromolecules. 2010 Oct 11;11(10):2583-92. doi: 10.1021/bm100521x.

16.

Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration.

Aboudzadeh N, Imani M, Shokrgozar MA, Khavandi A, Javadpour J, Shafieyan Y, Farokhi M.

J Biomed Mater Res A. 2010 Jul;94(1):137-45. doi: 10.1002/jbm.a.32673.

PMID:
20127996
17.

Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.

Cui Z, Nelson B, Peng Y, Li K, Pilla S, Li WJ, Turng LS, Shen C.

Mater Sci Eng C Mater Biol Appl. 2012 Aug 1;32(6):1674-81. doi: 10.1016/j.msec.2012.04.064. Epub 2012 Apr 29.

PMID:
24364976
18.

Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.

Song Y, Wennink JW, Kamphuis MM, Vermes I, Poot AA, Feijen J, Grijpma DW.

J Biomed Mater Res A. 2010 Nov;95(2):440-6. doi: 10.1002/jbm.a.32859.

PMID:
20648539
19.

The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.

Domingos M, Intranuovo F, Russo T, De Santis R, Gloria A, Ambrosio L, Ciurana J, Bartolo P.

Biofabrication. 2013 Dec;5(4):045004. doi: 10.1088/1758-5082/5/4/045004. Epub 2013 Nov 6.

PMID:
24192056
20.

Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.

Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S.

Int J Nanomedicine. 2013;8:4197-213. doi: 10.2147/IJN.S50685. Epub 2013 Nov 1.

Supplemental Content

Support Center