Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT.

Edwards WB, Schnitzer TJ, Troy KL.

J Biomech. 2013 Jun 21;46(10):1655-62. doi: 10.1016/j.jbiomech.2013.04.016. Epub 2013 May 13.

2.

Femoral strength is better predicted by finite element models than QCT and DXA.

Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP.

J Biomech. 1999 Oct;32(10):1013-20.

PMID:
10476839
3.

QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA.

Dall'Ara E, Pahr D, Varga P, Kainberger F, Zysset P.

Osteoporos Int. 2012 Feb;23(2):563-72. doi: 10.1007/s00198-011-1568-3. Epub 2011 Feb 23.

PMID:
21344244
4.

The mechanical consequence of actual bone loss and simulated bone recovery in acute spinal cord injury.

Edwards WB, Schnitzer TJ, Troy KL.

Bone. 2014 Mar;60:141-7. doi: 10.1016/j.bone.2013.12.012. Epub 2013 Dec 17.

5.

Experimental validation of DXA-based finite element models for prediction of femoral strength.

Dall'Ara E, Eastell R, Viceconti M, Pahr D, Yang L.

J Mech Behav Biomed Mater. 2016 Oct;63:17-25. doi: 10.1016/j.jmbbm.2016.06.004. Epub 2016 Jun 10.

6.

Reduction in Torsional Stiffness and Strength at the Proximal Tibia as a Function of Time Since Spinal Cord Injury.

Edwards WB, Simonian N, Troy KL, Schnitzer TJ.

J Bone Miner Res. 2015 Aug;30(8):1422-30. doi: 10.1002/jbmr.2474. Epub 2015 May 21.

7.

Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA).

Engelke K, Libanati C, Liu Y, Wang H, Austin M, Fuerst T, Stampa B, Timm W, Genant HK.

Bone. 2009 Jul;45(1):110-8. doi: 10.1016/j.bone.2009.03.669. Epub 2009 Apr 2.

PMID:
19345291
8.

Quantitative computed tomography-based finite element analysis predictions of femoral strength and stiffness depend on computed tomography settings.

Dragomir-Daescu D, Salas C, Uthamaraj S, Rossman T.

J Biomech. 2015 Jan 2;48(1):153-61. doi: 10.1016/j.jbiomech.2014.09.016. Epub 2014 Sep 28.

9.

Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship.

Nazemi SM, Amini M, Kontulainen SA, Milner JS, Holdsworth DW, Masri BA, Wilson DR, Johnston JD.

Clin Biomech (Bristol, Avon). 2015 Aug;30(7):703-12. doi: 10.1016/j.clinbiomech.2015.05.002. Epub 2015 May 14.

PMID:
26024555
10.

Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.

Väänänen SP, Grassi L, Flivik G, Jurvelin JS, Isaksson H.

Med Image Anal. 2015 Aug;24(1):125-34. doi: 10.1016/j.media.2015.06.001. Epub 2015 Jun 19.

PMID:
26148575
12.

Bone density, geometry, microstructure, and stiffness: Relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women.

Liu XS, Cohen A, Shane E, Yin PT, Stein EM, Rogers H, Kokolus SL, McMahon DJ, Lappe JM, Recker RR, Lang T, Guo XE.

J Bone Miner Res. 2010 Oct;25(10):2229-38. doi: 10.1002/jbmr.111.

13.

A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro.

Dall'Ara E, Schmidt R, Pahr D, Varga P, Chevalier Y, Patsch J, Kainberger F, Zysset P.

J Biomech. 2010 Aug 26;43(12):2374-80. doi: 10.1016/j.jbiomech.2010.04.023. Epub 2010 May 11.

PMID:
20462582
14.

Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia.

Nazemi SM, Kalajahi SMH, Cooper DML, Kontulainen SA, Holdsworth DW, Masri BA, Wilson DR, Johnston JD.

J Biomech. 2017 Jul 5;59:101-108. doi: 10.1016/j.jbiomech.2017.05.018. Epub 2017 May 31.

PMID:
28601243
15.

Proximal Cadaveric Femur Preparation for Fracture Strength Testing and Quantitative CT-based Finite Element Analysis.

Dragomir-Daescu D, Rezaei A, Uthamaraj S, Rossman T, Bronk JT, Bolander M, Lambert V, McEligot S, Entwistle R, Giambini H, Jasiuk I, Yaszemski MJ, Lu L.

J Vis Exp. 2017 Mar 11;(121). doi: 10.3791/54925.

PMID:
28362373
16.

Prediction of femoral strength using 3D finite element models reconstructed from DXA images: validation against experiments.

Grassi L, Väänänen SP, Ristinmaa M, Jurvelin JS, Isaksson H.

Biomech Model Mechanobiol. 2017 Jun;16(3):989-1000. doi: 10.1007/s10237-016-0866-2. Epub 2016 Dec 21.

17.

To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?

Schileo E, Balistreri L, Grassi L, Cristofolini L, Taddei F.

J Biomech. 2014 Nov 7;47(14):3531-8. doi: 10.1016/j.jbiomech.2014.08.024. Epub 2014 Sep 8.

PMID:
25261321
18.

Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures.

Stein EM, Liu XS, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Zhang C, Yin PT, Cosman F, Nieves J, Guo XE, Shane E.

J Bone Miner Res. 2010 Dec;25(12):2572-81. doi: 10.1002/jbmr.152. Epub 2010 Jun 18. Erratum in: J Bone Miner Res. 2011 Feb;26(2):439.

19.

Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.

Lu Y, Maquer G, Museyko O, Püschel K, Engelke K, Zysset P, Morlock M, Huber G.

J Biomech. 2014 Jul 18;47(10):2512-6. doi: 10.1016/j.jbiomech.2014.04.015. Epub 2014 Apr 16.

PMID:
24818795
20.

Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements.

Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Cosman F, Nieves J, Shane E, Guo XE.

J Bone Miner Res. 2012 Feb;27(2):263-72. doi: 10.1002/jbmr.562.

Supplemental Content

Support Center