Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 51

1.

Robustness of amplicon deep sequencing underlines its utility in clinical applications.

Grossmann V, Roller A, Klein HU, Weissmann S, Kern W, Haferlach C, Dugas M, Haferlach T, Schnittger S, Kohlmann A.

J Mol Diagn. 2013 Jul;15(4):473-84. doi: 10.1016/j.jmoldx.2013.03.003. Epub 2013 May 14.

PMID:
23680131
2.

Next-generation sequencing - feasibility and practicality in haematology.

Kohlmann A, Grossmann V, Nadarajah N, Haferlach T.

Br J Haematol. 2013 Mar;160(6):736-53. doi: 10.1111/bjh.12194. Epub 2013 Jan 7. Review.

PMID:
23294427
3.

The Interlaboratory RObustness of Next-generation sequencing (IRON) study: a deep sequencing investigation of TET2, CBL and KRAS mutations by an international consortium involving 10 laboratories.

Kohlmann A, Klein HU, Weissmann S, Bresolin S, Chaplin T, Cuppens H, Haschke-Becher E, Garicochea B, Grossmann V, Hanczaruk B, Hebestreit K, Gabriel C, Iacobucci I, Jansen JH, te Kronnie G, van de Locht L, Martinelli G, McGowan K, Schweiger MR, Timmermann B, Vandenberghe P, Young BD, Dugas M, Haferlach T.

Leukemia. 2011 Dec;25(12):1840-8. doi: 10.1038/leu.2011.155. Epub 2011 Jun 17.

PMID:
21681191
4.

High throughput HLA genotyping using 454 sequencing and the Fluidigm Access Array™ System for simplified amplicon library preparation.

Moonsamy PV, Williams T, Bonella P, Holcomb CL, Höglund BN, Hillman G, Goodridge D, Turenchalk GS, Blake LA, Daigle DA, Simen BB, Hamilton A, May AP, Erlich HA.

Tissue Antigens. 2013 Mar;81(3):141-9. doi: 10.1111/tan.12071.

PMID:
23398507
5.

Strategy for robust detection of insertions, deletions, and point mutations in CEBPA, a GC-rich content gene, using 454 next-generation deep-sequencing technology.

Grossmann V, Schnittger S, Schindela S, Klein HU, Eder C, Dugas M, Kern W, Haferlach T, Haferlach C, Kohlmann A.

J Mol Diagn. 2011 Mar;13(2):129-36. doi: 10.1016/j.jmoldx.2010.09.001.

6.

Integration of next-generation sequencing into clinical practice: are we there yet?

Kohlmann A, Grossmann V, Haferlach T.

Semin Oncol. 2012 Feb;39(1):26-36. doi: 10.1053/j.seminoncol.2011.11.008. Review.

PMID:
22289489
7.

Competitive amplification of differentially melting amplicons (CADMA) enables sensitive and direct detection of all mutation types by high-resolution melting analysis.

Kristensen LS, Andersen GB, Hager H, Hansen LL.

Hum Mutat. 2012 Jan;33(1):264-71. doi: 10.1002/humu.21598. Epub 2011 Sep 28.

PMID:
21901793
8.

Minor variant detection in amplicons using 454 massive parallel pyrosequencing: experiences and considerations for successful applications.

Vandenbroucke I, Van Marck H, Verhasselt P, Thys K, Mostmans W, Dumont S, Van Eygen V, Coen K, Tuefferd M, Aerssens J.

Biotechniques. 2011 Sep;51(3):167-77. doi: 10.2144/000113733.

9.

Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA.

Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley D, Hadfield J, May AP, Caldas C, Brenton JD, Rosenfeld N.

Sci Transl Med. 2012 May 30;4(136):136ra68. doi: 10.1126/scitranslmed.3003726.

10.

Strategy for modular tagged high-throughput amplicon sequencing.

de Cárcer DA, Denman SE, McSweeney C, Morrison M.

Appl Environ Microbiol. 2011 Sep;77(17):6310-2. doi: 10.1128/AEM.05146-11. Epub 2011 Jul 15.

11.

Next-generation sequencing and its applications in molecular diagnostics.

Su Z, Ning B, Fang H, Hong H, Perkins R, Tong W, Shi L.

Expert Rev Mol Diagn. 2011 Apr;11(3):333-43. doi: 10.1586/erm.11.3. Review.

PMID:
21463242
12.

Deep resequencing of mitochondrial DNA.

Payne BA, Gardner K, Coxhead J, Chinnery PF.

Methods Mol Biol. 2015;1264:59-66. doi: 10.1007/978-1-4939-2257-4_6.

PMID:
25631003
13.

Molecular analysis of the breast cancer genes BRCA1 and BRCA2 using amplicon-based massive parallel pyrosequencing.

Michils G, Hollants S, Dehaspe L, Van Houdt J, Bidet Y, Uhrhammer N, Bignon YJ, Vermeesch JR, Cuppens H, Matthijs G.

J Mol Diagn. 2012 Nov;14(6):623-30. doi: 10.1016/j.jmoldx.2012.05.006. Epub 2012 Sep 30.

PMID:
23034506
14.

High-throughput, high-fidelity HLA genotyping with deep sequencing.

Wang C, Krishnakumar S, Wilhelmy J, Babrzadeh F, Stepanyan L, Su LF, Levinson D, Fernandez-Viña MA, Davis RW, Davis MM, Mindrinos M.

Proc Natl Acad Sci U S A. 2012 May 29;109(22):8676-81. doi: 10.1073/pnas.1206614109. Epub 2012 May 15.

15.

High-throughput sequencing of PCR products tagged with universal primers using 454 life sciences systems.

Daigle D, Simen BB, Pochart P.

Curr Protoc Mol Biol. 2011 Oct;Chapter 7:Unit7.5. doi: 10.1002/0471142727.mb0705s96.

PMID:
21987058
16.

Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities.

Bokulich NA, Mills DA.

Appl Environ Microbiol. 2013 Apr;79(8):2519-26. doi: 10.1128/AEM.03870-12. Epub 2013 Feb 1.

17.

Illumina sequencing of 15 deafness genes using fragmented amplicons.

Van Nieuwerburgh F, De Keulenaer S, De Schrijver J, Vandesompele J, Van Criekinge W, Coucke PJ, Deforce D.

BMC Res Notes. 2014 Aug 9;7:509. doi: 10.1186/1756-0500-7-509.

18.
19.

Ultra high throughput sequencing in human DNA variation detection: a comparative study on the NDUFA3-PRPF31 region.

Benaglio P, Rivolta C.

PLoS One. 2010 Sep 29;5(9). pii: e13071. doi: 10.1371/journal.pone.0013071.

20.

Detection of low prevalence somatic mutations in solid tumors with ultra-deep targeted sequencing.

Harismendy O, Schwab RB, Bao L, Olson J, Rozenzhak S, Kotsopoulos SK, Pond S, Crain B, Chee MS, Messer K, Link DR, Frazer KA.

Genome Biol. 2011 Dec 20;12(12):R124. doi: 10.1186/gb-2011-12-12-r124.

Supplemental Content

Support Center