Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Influence of intravenous contrast medium on dose calculation using CT in treatment planning for oesophageal cancer.

Li HS, Chen JH, Zhang W, Shang DP, Li BS, Sun T, Lin XT, Yin Y.

Asian Pac J Cancer Prev. 2013;14(3):1609-14.

2.

Intravenous contrast agent influence on thoracic computed tomography simulation investigated through a heterogeneous dose calculation method using 5-bulk densities.

Saito AI, Li JG, Liu C, Olivier KR, Kyougoku S, Dempsey JF.

Am J Clin Oncol. 2012 Apr;35(2):110-4. doi: 10.1097/COC.0b013e318209a910.

PMID:
21383608
3.

Prospective study evaluating the use of IV contrast on IMRT treatment planning for lung cancer.

Li H, Bottani B, DeWees T, Low DA, Michalski JM, Mutic S, Bradley JD, Robinson CG.

Med Phys. 2014 Mar;41(3):031708. doi: 10.1118/1.4865766.

PMID:
24593712
4.

The effect of a contrast agent on proton beam range in radiotherapy planning using computed tomography for patients with locoregionally advanced lung cancer.

Hwang UJ, Shin DH, Kim TH, Moon SH, Lim YK, Jeong H, Rah JE, Kim SS, Kim JY, Kim DY, Park SY, Cho KH.

Int J Radiat Oncol Biol Phys. 2011 Nov 15;81(4):e317-24. doi: 10.1016/j.ijrobp.2011.02.025. Epub 2011 Apr 15.

PMID:
21497456
5.

Feasibility of using intravenous contrast-enhanced computed tomography (CT) scans in lung cancer treatment planning.

Xiao J, Zhang H, Gong Y, Fu Y, Tang B, Wang S, Jiang Q, Li P.

Radiother Oncol. 2010 Jul;96(1):73-7. doi: 10.1016/j.radonc.2010.02.029. Epub 2010 Mar 27.

PMID:
20347496
6.

Feasibility of shrinking field radiation therapy through 18F-FDG PET/CT after 40 Gy for stage III non-small cell lung cancers.

Ding XP, Zhang J, Li BS, Li HS, Wang ZT, Yi Y, Sun HF, Wang DQ.

Asian Pac J Cancer Prev. 2012;13(1):319-23.

7.

FDG-PET/CT during concomitant chemo radiotherapy for esophageal cancer: Reducing target volumes to deliver higher radiotherapy doses.

Nkhali L, Thureau S, Edet-Sanson A, Doyeux K, Benyoucef A, Gardin I, Michel P, Vera P, Dubray B.

Acta Oncol. 2015 Jun;54(6):909-15. doi: 10.3109/0284186X.2014.973062. Epub 2014 Nov 24.

PMID:
25417733
8.

Combined PET/CT for IMRT treatment planning of NSCLC: contrast-enhanced CT images for Monte Carlo dose calculation.

Mönnich D, Lächelt S, Beyer T, Werner MK, Thorwarth D.

Phys Med. 2013 Nov;29(6):644-9. doi: 10.1016/j.ejmp.2012.08.002. Epub 2012 Sep 10.

PMID:
22975430
9.

Volumetric-modulated arc therapy for the treatment of a large planning target volume in thoracic esophageal cancer.

Abbas AS, Moseley D, Kassam Z, Kim SM, Cho C.

J Appl Clin Med Phys. 2013 May 6;14(3):4269. doi: 10.1120/jacmp.v14i3.4269.

PMID:
23652258
10.

Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study.

van Der Wel A, Nijsten S, Hochstenbag M, Lamers R, Boersma L, Wanders R, Lutgens L, Zimny M, Bentzen SM, Wouters B, Lambin P, De Ruysscher D.

Int J Radiat Oncol Biol Phys. 2005 Mar 1;61(3):649-55.

PMID:
15708242
11.

[The use of PET/CT in radiotherapy of patients with non-small cell lung cancer].

Lõcsei Z, Hideghéty K, Farkas R, Bellyei S, Sárosi V, Sebestyén K, Sebestyén Z, Kovács P, Mangel L.

Magy Onkol. 2011 Nov;55(4):274-80. doi: MagyOnkol.2011.55.4.274. Epub 2011 Jul 4. Hungarian.

12.

Influence of intravenous contrast agent on dose calculations of intensity modulated radiation therapy plans for head and neck cancer.

Choi Y, Kim JK, Lee HS, Hur WJ, Hong YS, Park S, Ahn K, Cho H.

Radiother Oncol. 2006 Nov;81(2):158-62. Epub 2006 Oct 16.

PMID:
17050020
13.

Effect of CT contrast on volumetric arc therapy planning (RapidArc and helical tomotherapy) for head and neck cancer.

Liu AJ, Vora N, Suh S, Liu A, Schultheiss TE, Wong JY.

Med Dosim. 2015 Spring;40(1):32-6. doi: 10.1016/j.meddos.2014.07.003. Epub 2014 Sep 18.

PMID:
25242679
14.

Dependence of ventilation image derived from 4D CT on deformable image registration and ventilation algorithms.

Latifi K, Forster KM, Hoffe SE, Dilling TJ, van Elmpt W, Dekker A, Zhang GG.

J Appl Clin Med Phys. 2013 Jul 8;14(4):4247. doi: 10.1120/jacmp.v14i4.4247.

PMID:
23835389
15.

Simultaneous modulated accelerated radiation therapy for esophageal cancer: a feasibility study.

Zhang WZ, Chen JZ, Li DR, Chen ZJ, Guo H, Zhuang TT, Li DS, Zhou MZ, Chen CZ.

World J Gastroenterol. 2014 Oct 14;20(38):13973-80. doi: 10.3748/wjg.v20.i38.13973.

16.

Intensity-modulated radiotherapy for locally advanced non-small-cell lung cancer: a dose-escalation planning study.

Lievens Y, Nulens A, Gaber MA, Defraene G, De Wever W, Stroobants S, Van den Heuvel F; Leuven Lung Cancer Group.

Int J Radiat Oncol Biol Phys. 2011 May 1;80(1):306-13. doi: 10.1016/j.ijrobp.2010.06.025. Epub 2010 Oct 1.

PMID:
20888706
17.

The effect of intravenous contrast on photon radiation therapy dose calculations for lung cancer.

Shi W, Liu C, Lu B, Yeung A, Newlin HE, Amdur RJ, Olivier KR.

Am J Clin Oncol. 2010 Apr;33(2):153-6. doi: 10.1097/COC.0b013e3181a44637.

PMID:
19806038
18.

Radiotherapy treatment planning with contrast-enhanced computed tomography: feasibility of dual-energy virtual unenhanced imaging for improved dose calculations.

Yamada S, Ueguchi T, Ogata T, Mizuno H, Ogihara R, Koizumi M, Shimazu T, Murase K, Ogawa K.

Radiat Oncol. 2014 Jul 29;9:168. doi: 10.1186/1748-717X-9-168.

19.

Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET).

Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu YC, Braban LE, Humm JL, Squire OD, Chui CS, Larson SM, Yorke ED.

Radiother Oncol. 2002 Jan;62(1):51-60.

PMID:
11830312
20.

A potential to reduce pulmonary toxicity: the use of perfusion SPECT with IMRT for functional lung avoidance in radiotherapy of non-small cell lung cancer.

Lavrenkov K, Christian JA, Partridge M, Niotsikou E, Cook G, Parker M, Bedford JL, Brada M.

Radiother Oncol. 2007 May;83(2):156-62. Epub 2007 May 9.

PMID:
17493699

Supplemental Content

Support Center