Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Small, highly active DNAs that hydrolyze DNA.

Gu H, Furukawa K, Weinberg Z, Berenson DF, Breaker RR.

J Am Chem Soc. 2013 Jun 19;135(24):9121-9. doi: 10.1021/ja403585e. Epub 2013 Jun 6.

2.

Pursuing DNA catalysts for protein modification.

Silverman SK.

Acc Chem Res. 2015 May 19;48(5):1369-79. doi: 10.1021/acs.accounts.5b00090. Epub 2015 May 5.

3.

DNA-catalyzed sequence-specific hydrolysis of DNA.

Chandra M, Sachdeva A, Silverman SK.

Nat Chem Biol. 2009 Oct;5(10):718-20. doi: 10.1038/nchembio.201. Epub 2009 Aug 16.

4.

Zn2+-dependent deoxyribozymes that form natural and unnatural RNA linkages.

Hoadley KA, Purtha WE, Wolf AC, Flynn-Charlebois A, Silverman SK.

Biochemistry. 2005 Jun 28;44(25):9217-31.

5.
6.

Deoxyribozymes: selection design and serendipity in the development of DNA catalysts.

Silverman SK.

Acc Chem Res. 2009 Oct 20;42(10):1521-31. doi: 10.1021/ar900052y. Review.

7.

Improved deoxyribozymes for synthesis of covalently branched DNA and RNA.

Lee CS, Mui TP, Silverman SK.

Nucleic Acids Res. 2011 Jan;39(1):269-79. doi: 10.1093/nar/gkq753. Epub 2010 Aug 25.

8.

Characterization of non-8-17 sequences uncovers structurally diverse RNA-cleaving deoxyribozymes.

Lam JC, Kwan SO, Li Y.

Mol Biosyst. 2011 Jul;7(7):2139-46. doi: 10.1039/c1mb05034f. Epub 2011 Apr 27.

PMID:
21523306
9.

In vitro selection of high temperature Zn(2+)-dependent DNAzymes.

Nelson KE, Bruesehoff PJ, Lu Y.

J Mol Evol. 2005 Aug;61(2):216-25. Epub 2005 Aug 4.

PMID:
16096680
10.

Deoxyribozymes: new activities and new applications.

Emilsson GM, Breaker RR.

Cell Mol Life Sci. 2002 Apr;59(4):596-607. Review.

PMID:
12022469
11.

A lead-dependent DNAzyme with a two-step mechanism.

Brown AK, Li J, Pavot CM, Lu Y.

Biochemistry. 2003 Jun 17;42(23):7152-61.

PMID:
12795611
12.

Characterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme.

Kandadai SA, Li Y.

Nucleic Acids Res. 2006 Jan 3;33(22):7164-75. Print 2005.

13.

Deoxyribozymes: useful DNA catalysts in vitro and in vivo.

Baum DA, Silverman SK.

Cell Mol Life Sci. 2008 Jul;65(14):2156-74. doi: 10.1007/s00018-008-8029-y. Review.

PMID:
18373062
14.

Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects.

Silverman SK.

Chem Commun (Camb). 2008 Aug 14;(30):3467-85. doi: 10.1039/b807292m. Epub 2008 Jul 1. Review.

PMID:
18654692
15.

In vitro selection of small RNA-cleaving deoxyribozymes that cleave pyrimidine-pyrimidine junctions.

Schlosser K, Gu J, Lam JC, Li Y.

Nucleic Acids Res. 2008 Aug;36(14):4768-77. doi: 10.1093/nar/gkn396. Epub 2008 Jul 21.

16.

Merely two mutations switch a DNA-hydrolyzing deoxyribozyme from heterobimetallic (Zn2+/Mn2+) to monometallic (Zn2+-only) behavior.

Xiao Y, Allen EC, Silverman SK.

Chem Commun (Camb). 2011 Feb 14;47(6):1749-51. doi: 10.1039/c0cc04575f. Epub 2010 Dec 1.

18.

Establishing broad generality of DNA catalysts for site-specific hydrolysis of single-stranded DNA.

Xiao Y, Wehrmann RJ, Ibrahim NA, Silverman SK.

Nucleic Acids Res. 2012 Feb;40(4):1778-86. doi: 10.1093/nar/gkr860. Epub 2011 Oct 22.

19.

Rational modification of a selection strategy leads to deoxyribozymes that create native 3'-5' RNA linkages.

Coppins RL, Silverman SK.

J Am Chem Soc. 2004 Dec 22;126(50):16426-32.

PMID:
15600344
20.

Functional compromises among pH tolerance, site specificity, and sequence tolerance for a DNA-hydrolyzing deoxyribozyme.

Xiao Y, Chandra M, Silverman SK.

Biochemistry. 2010 Nov 9;49(44):9630-7. doi: 10.1021/bi1013672.

Supplemental Content

Support Center