Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.

Spatial recognition of defects and tube type in carbon nanotube field effect transistors using electrostatic force microscopy.

Ibrahim I, Rümmeli MH, Ranjan N, Büchner B, Cuniberti G.

Nanotechnology. 2013 Jun 14;24(23):235708. doi: 10.1088/0957-4484/24/23/235708. Epub 2013 May 15.

PMID:
23676214
2.

p-n homo-junction arrays of aligned single walled carbon nanotubes fabricated by selective patterning of polyethyleneimine film.

Park J, Yoon J, Kim GT, Ha JS.

Nanotechnology. 2011 Sep 23;22(38):385302. doi: 10.1088/0957-4484/22/38/385302. Epub 2011 Aug 25.

PMID:
21865628
3.

Nanoscale optical and electrical characterization of horizontally aligned single-walled carbon nanotubes.

Rodriguez RD, Toader M, Hermann S, Sheremet E, Müller S, Gordan OD, Yu H, Schulz SE, Hietschold M, Zahn DR.

Nanoscale Res Lett. 2012 Dec 21;7(1):682. doi: 10.1186/1556-276X-7-682.

4.

Quantitative Conductive Atomic Force Microscopy on Single-Walled Carbon Nanotube-Based Polymer Composites.

Bârsan OA, Hoffmann GG, van der Ven LG, de With G.

ACS Appl Mater Interfaces. 2016 Aug 3;8(30):19701-8. doi: 10.1021/acsami.6b06201. Epub 2016 Jul 20.

PMID:
27404764
5.

Local electrical characteristics of dielectrophoretically deposited carbon nanotubes.

Jeong H, Kang H, Baik S, Park JY.

J Nanosci Nanotechnol. 2011 Feb;11(2):1791-4.

PMID:
21456293
6.

VLSI-compatible carbon nanotube doping technique with low work-function metal oxides.

Suriyasena Liyanage L, Xu X, Pitner G, Bao Z, Wong HS.

Nano Lett. 2014;14(4):1884-90. doi: 10.1021/nl404654j. Epub 2014 Mar 24.

PMID:
24628497
7.

Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors.

Kocabas C, Hur SH, Gaur A, Meitl MA, Shim M, Rogers JA.

Small. 2005 Nov;1(11):1110-6.

PMID:
17193404
8.

Studying single-wall carbon nanotubes through encapsulation: from optical methods till magnetic resonance.

Simon F.

J Nanosci Nanotechnol. 2007 Apr-May;7(4-5):1197-220. Review.

PMID:
17450887
9.

Floating-potential dielectrophoresis-controlled fabrication of single-carbon-nanotube transistors and their electrical properties.

Dong L, Chirayos V, Bush J, Jiao J, Dubin VM, Chebian RV, Ono Y, Conley JF Jr, Ulrich BD.

J Phys Chem B. 2005 Jul 14;109(27):13148-53.

PMID:
16852637
10.

Carbon nanotube modified probes for stable and high sensitivity conductive atomic force microscopy.

Slattery AD, Shearer CJ, Gibson CT, Shapter JG, Lewis DA, Stapleton AJ.

Nanotechnology. 2016 Nov 25;27(47):475708. Epub 2016 Oct 26.

PMID:
27782008
11.

Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio.

Brady GJ, Joo Y, Wu MY, Shea MJ, Gopalan P, Arnold MS.

ACS Nano. 2014 Nov 25;8(11):11614-21. doi: 10.1021/nn5048734. Epub 2014 Nov 13.

PMID:
25383880
12.

Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy.

Liu S, Ng AK, Xu R, Wei J, Tan CM, Yang Y, Chen Y.

Nanoscale. 2010 Dec;2(12):2744-50. doi: 10.1039/c0nr00441c. Epub 2010 Sep 29.

PMID:
20877897
13.

Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes.

Cao Q, Han SJ, Tulevski GS, Franklin AD, Haensch W.

ACS Nano. 2012 Jul 24;6(7):6471-7. doi: 10.1021/nn302185d. Epub 2012 Jun 12.

PMID:
22671996
14.

High-performance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique.

Wang Y, Pillai SK, Chan-Park MB.

Small. 2013 Sep 9;9(17):2960-9. doi: 10.1002/smll.201203178. Epub 2013 Feb 26.

PMID:
23441038
15.

The fabrication of carbon nanotube field-effect transistors with semiconductors as the source and drain contact materials.

Xiao Z, Camino FE.

Nanotechnology. 2009 Apr 1;20(13):135205. doi: 10.1088/0957-4484/20/13/135205. Epub 2009 Mar 10.

PMID:
19420491
16.

High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates.

Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, McEuen P, Lundstrom M, Dai H.

Nat Mater. 2002 Dec;1(4):241-6.

PMID:
12618786
17.

High-performance printed carbon nanotube thin-film transistors array fabricated by a nonlithography technique using hafnium oxide passivation layer and mask.

Pillai SK, Chan-Park MB.

ACS Appl Mater Interfaces. 2012 Dec;4(12):7047-54. doi: 10.1021/am302431e. Epub 2012 Dec 7.

PMID:
23194001
18.

Fabrication of Schottky barrier carbon nanotube field effect transistors using dielectrophoretic-based manipulation.

Yu H, Tian X, Dong Z, Li WJ.

J Nanosci Nanotechnol. 2010 Nov;10(11):7000-4.

PMID:
21137853
19.

Electroluminescence from electrolyte-gated carbon nanotube field-effect transistors.

Zaumseil J, Ho X, Guest JR, Wiederrecht GP, Rogers JA.

ACS Nano. 2009 Aug 25;3(8):2225-34. doi: 10.1021/nn9005736.

PMID:
19634895
20.

Single- and few-walled carbon nanotubes grown at temperatures as low as 450 degrees c: electrical and field emission characterization.

Gohier A, Djouadi MA, Dubosc M, Granier A, Minea TM, Sirghi L, Rossi F, Paredez P, Alvarez F.

J Nanosci Nanotechnol. 2007 Sep;7(9):3350-3.

PMID:
18019175

Supplemental Content

Support Center