Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 250

1.

Adaptive β-cell proliferation increases early in high-fat feeding in mice, concurrent with metabolic changes, with induction of islet cyclin D2 expression.

Stamateris RE, Sharma RB, Hollern DA, Alonso LC.

Am J Physiol Endocrinol Metab. 2013 Jul 1;305(1):E149-59. doi: 10.1152/ajpendo.00040.2013. Epub 2013 May 14.

2.

Taurine supplementation prevents morpho-physiological alterations in high-fat diet mice pancreatic β-cells.

Ribeiro RA, Santos-Silva JC, Vettorazzi JF, Cotrim BB, Mobiolli DD, Boschero AC, Carneiro EM.

Amino Acids. 2012 Oct;43(4):1791-801. Epub 2012 Mar 15.

PMID:
22418865
3.

Influence of gender and time diet exposure on endocrine pancreas remodeling in response to high fat diet-induced metabolic disturbances in mice.

Oliveira RB, Maschio DA, Carvalho CP, Collares-Buzato CB.

Ann Anat. 2015 Jul;200:88-97. doi: 10.1016/j.aanat.2015.01.007. Epub 2015 Mar 3.

PMID:
25819502
4.

High-fat diet-induced β-cell proliferation occurs prior to insulin resistance in C57Bl/6J male mice.

Mosser RE, Maulis MF, Moullé VS, Dunn JC, Carboneau BA, Arasi K, Pappan K, Poitout V, Gannon M.

Am J Physiol Endocrinol Metab. 2015 Apr 1;308(7):E573-82. doi: 10.1152/ajpendo.00460.2014. Epub 2015 Jan 27.

5.

mTORC1 pathway mediates beta cell compensatory proliferation in 60 % partial-pancreatectomy mice.

Li W, Zhang H, Nie A, Ni Q, Li F, Ning G, Li X, Gu Y, Wang Q.

Endocrine. 2016 Jul;53(1):117-28. doi: 10.1007/s12020-016-0861-5. Epub 2016 Jan 27.

PMID:
26818915
6.

PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2.

Lakshmipathi J, Alvarez-Perez JC, Rosselot C, Casinelli GP, Stamateris RE, Rausell-Palamos F, O'Donnell CP, Vasavada RC, Scott DK, Alonso LC, Garcia-Ocaña A.

Diabetes. 2016 May;65(5):1283-96. doi: 10.2337/db15-1398. Epub 2016 Feb 11.

7.
8.

Beta-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass.

Peyot ML, Pepin E, Lamontagne J, Latour MG, Zarrouki B, Lussier R, Pineda M, Jetton TL, Madiraju SR, Joly E, Prentki M.

Diabetes. 2010 Sep;59(9):2178-87. doi: 10.2337/db09-1452. Epub 2010 Jun 14.

9.

Insulin hypersecretion in islets from diet-induced hyperinsulinemic obese female mice is associated with several functional adaptations in individual β-cells.

Gonzalez A, Merino B, Marroquí L, Ñeco P, Alonso-Magdalena P, Caballero-Garrido E, Vieira E, Soriano S, Gomis R, Nadal A, Quesada I.

Endocrinology. 2013 Oct;154(10):3515-24. doi: 10.1210/en.2013-1424. Epub 2013 Jul 18.

PMID:
23867214
10.

Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice.

Rakshit K, Hsu TW, Matveyenko AV.

Diabetologia. 2016 Apr;59(4):734-43. doi: 10.1007/s00125-015-3859-2. Epub 2016 Jan 13.

11.

Deteriorated high-fat diet-induced diabetes caused by pancreatic β-cell-specific overexpression of Reg3β gene in mice.

Xiong X, Li Q, Cui W, Gao ZH, Liu JL.

Endocrine. 2016 Nov;54(2):360-370. Epub 2016 Jun 3.

PMID:
27259509
12.

TCTP is essential for β-cell proliferation and mass expansion during development and β-cell adaptation in response to insulin resistance.

Tsai MJ, Yang-Yen HF, Chiang MK, Wang MJ, Wu SS, Chen SH.

Endocrinology. 2014 Feb;155(2):392-404. doi: 10.1210/en.2013-1663. Epub 2013 Nov 18.

PMID:
24248465
13.

Temporal characterization of β cell-adaptive and -maladaptive mechanisms during chronic high-fat feeding in C57BL/6NTac mice.

Gupta D, Jetton TL, LaRock K, Monga N, Satish B, Lausier J, Peshavaria M, Leahy JL.

J Biol Chem. 2017 Jul 28;292(30):12449-12459. doi: 10.1074/jbc.M117.781047. Epub 2017 May 9.

PMID:
28487366
14.

Differential development of glucose intolerance and pancreatic islet adaptation in multiple diet induced obesity models.

Omar B, Pacini G, Ahrén B.

Nutrients. 2012 Sep 28;4(10):1367-81. doi: 10.3390/nu4101367.

15.

Early and rapid development of insulin resistance, islet dysfunction and glucose intolerance after high-fat feeding in mice overexpressing phosphodiesterase 3B.

Walz HA, Härndahl L, Wierup N, Zmuda-Trzebiatowska E, Svennelid F, Manganiello VC, Ploug T, Sundler F, Degerman E, Ahrén B, Holst LS.

J Endocrinol. 2006 Jun;189(3):629-41.

16.

The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding.

Kebede M, Alquier T, Latour MG, Semache M, Tremblay C, Poitout V.

Diabetes. 2008 Sep;57(9):2432-7. doi: 10.2337/db08-0553. Epub 2008 Jun 16. Erratum in: Diabetes. 2008 Nov;57(11):3166.

17.

Novel canine models of obese prediabetes and mild type 2 diabetes.

Ionut V, Liu H, Mooradian V, Castro AV, Kabir M, Stefanovski D, Zheng D, Kirkman EL, Bergman RN.

Am J Physiol Endocrinol Metab. 2010 Jan;298(1):E38-48. doi: 10.1152/ajpendo.00466.2009. Epub 2009 Oct 20.

18.

Mice Deficient in Proglucagon-Derived Peptides Exhibit Glucose Intolerance on a High-Fat Diet but Are Resistant to Obesity.

Takagi Y, Kinoshita K, Ozaki N, Seino Y, Murata Y, Oshida Y, Hayashi Y.

PLoS One. 2015 Sep 17;10(9):e0138322. doi: 10.1371/journal.pone.0138322. eCollection 2015.

19.

Effect of chronic p,p'-dichlorodiphenyldichloroethylene (DDE) exposure on high fat diet-induced alterations in glucose and lipid metabolism in male C57BL/6H mice.

Howell GE 3rd, Mulligan C, Meek E, Chambers JE.

Toxicology. 2015 Feb 3;328:112-22. doi: 10.1016/j.tox.2014.12.017. Epub 2014 Dec 23.

PMID:
25541407
20.

Islet cell response to high fat programming in neonate, weanling and adolescent Wistar rats.

Cerf ME, Louw J.

JOP. 2014 May 27;15(3):228-36. doi: 10.6092/1590-8577/1534.

Supplemental Content

Support Center