Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121


Description of a novel viral tool to identify and quantify ovine faecal pollution in the environment.

Rusiñol M, Carratalà A, Hundesa A, Bach A, Kern A, Vantarakis A, Girones R, Bofill-Mas S.

Sci Total Environ. 2013 Aug 1;458-460:355-60. doi: 10.1016/j.scitotenv.2013.04.028. Epub 2013 May 11. Erratum in: Sci Total Environ. 2014 Jan 1;466-467;1114.


Development of a quantitative PCR assay for the quantitation of bovine polyomavirus as a microbial source-tracking tool.

Hundesa A, Bofill-Mas S, Maluquer de Motes C, Rodriguez-Manzano J, Bach A, Casas M, Girones R.

J Virol Methods. 2010 Feb;163(2):385-9. doi: 10.1016/j.jviromet.2009.10.029. Epub 2009 Nov 1.


Identification of human and animal adenoviruses and polyomaviruses for determination of sources of fecal contamination in the environment.

Hundesa A, Maluquer de Motes C, Bofill-Mas S, Albinana-Gimenez N, Girones R.

Appl Environ Microbiol. 2006 Dec;72(12):7886-93. Epub 2006 Oct 13.


Development of a qPCR assay for the quantification of porcine adenoviruses as an MST tool for swine fecal contamination in the environment.

Hundesa A, Maluquer de Motes C, Albinana-Gimenez N, Rodriguez-Manzano J, Bofill-Mas S, Suñen E, Rosina Girones R.

J Virol Methods. 2009 Jun;158(1-2):130-5. doi: 10.1016/j.jviromet.2009.02.006. Epub 2009 Mar 17.


Newly described human polyomaviruses Merkel cell, KI and WU are present in urban sewage and may represent potential environmental contaminants.

Bofill-Mas S, Rodriguez-Manzano J, Calgua B, Carratala A, Girones R.

Virol J. 2010 Jun 28;7:141. doi: 10.1186/1743-422X-7-141.


Human-, Ovine-, and Bovine-Specific Viral Source Tracking Tools to Discriminate Between the Major Fecal Sources in Agricultural Waters.

Rusiñol M, Moriarty E, Lin S, Bofill-Mas S, Gilpin B.

Food Environ Virol. 2016 Mar;8(1):34-45. doi: 10.1007/s12560-015-9223-3. Epub 2015 Nov 25.


Evidence of viral dissemination and seasonality in a Mediterranean river catchment: Implications for water pollution management.

Rusiñol M, Fernandez-Cassi X, Timoneda N, Carratalà A, Abril JF, Silvera C, Figueras MJ, Gelati E, Rodó X, Kay D, Wyn-Jones P, Bofill-Mas S, Girones R.

J Environ Manage. 2015 Aug 15;159:58-67. doi: 10.1016/j.jenvman.2015.05.019. Epub 2015 Jun 2.


Cost-effective method for microbial source tracking using specific human and animal viruses.

Bofill-Mas S, Hundesa A, Calgua B, Rusiñol M, Maluquer de Motes C, Girones R.

J Vis Exp. 2011 Dec 3;(58). pii: 2820. doi: 10.3791/2820.


Detection of human-derived fecal pollution in environmental waters by use of a PCR-based human polyomavirus assay.

McQuaig SM, Scott TM, Harwood VJ, Farrah SR, Lukasik JO.

Appl Environ Microbiol. 2006 Dec;72(12):7567-74. Epub 2006 Sep 22.


Quantification of human and animal viruses to differentiate the origin of the fecal contamination present in environmental samples.

Bofill-Mas S, Rusiñol M, Fernandez-Cassi X, Carratalà A, Hundesa A, Girones R.

Biomed Res Int. 2013;2013:192089. doi: 10.1155/2013/192089. Epub 2013 May 15. Erratum in: Biomed Res Int. 2014;2014:675857.


Distribution of human polyomaviruses, adenoviruses, and hepatitis E virus in the environment and in a drinking-water treatment plant.

Albinana-Gimenez N, Clemente-Casares P, Bofill-Mas S, Hundesa A, Ribas F, Girones R.

Environ Sci Technol. 2006 Dec 1;40(23):7416-22.


Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers.

Mieszkin S, Furet JP, Corthier G, Gourmelon M.

Appl Environ Microbiol. 2009 May;75(10):3045-54. doi: 10.1128/AEM.02343-08. Epub 2009 Mar 27.


Use of eukaryotic mitochondrial DNA to differentiate human, bovine, porcine and ovine sources in fecally contaminated surface water.

Martellini A, Payment P, Villemur R.

Water Res. 2005 Feb;39(4):541-8. Epub 2004 Dec 24.


Universal mitochondrial PCR combined with species-specific dot-blot assay as a source-tracking method of human, bovine, chicken, ovine, and porcine in fecal-contaminated surface water.

Kortbaoui R, Locas A, Imbeau M, Payment P, Villemur R.

Water Res. 2009 Apr;43(7):2002-10. doi: 10.1016/j.watres.2009.01.030. Epub 2009 Feb 10.


Microbial source tracking to identify human and ruminant sources of faecal pollution in an ephemeral Florida river.

Chase E, Hunting J, Staley C, Harwood VJ.

J Appl Microbiol. 2012 Dec;113(6):1396-406. doi: 10.1111/jam.12007. Epub 2012 Oct 11.


Consistency in the host specificity and host sensitivity of the Bacteroides HF183 marker for sewage pollution tracking.

Ahmed W, Masters N, Toze S.

Lett Appl Microbiol. 2012 Oct;55(4):283-9. doi: 10.1111/j.1472-765X.2012.03291.x. Epub 2012 Aug 17.


Application of human and animal viral microbial source tracking tools in fresh and marine waters from five different geographical areas.

Rusiñol M, Fernandez-Cassi X, Hundesa A, Vieira C, Kern A, Eriksson I, Ziros P, Kay D, Miagostovich M, Vargha M, Allard A, Vantarakis A, Wyn-Jones P, Bofill-Mas S, Girones R.

Water Res. 2014 Aug 1;59:119-29. doi: 10.1016/j.watres.2014.04.013. Epub 2014 Apr 18.


Viral multiplex quantitative PCR assays for tracking sources of fecal contamination.

Wolf S, Hewitt J, Greening GE.

Appl Environ Microbiol. 2010 Mar;76(5):1388-94. doi: 10.1128/AEM.02249-09. Epub 2010 Jan 8.


Application of mitochondrial DNA analysis for microbial source tracking purposes in shellfish harvesting waters.

Baker-Austin C, Rangdale R, Lowther J, Lees DN.

Water Sci Technol. 2010;61(1):1-7. doi: 10.2166/wst.2010.767.


Isolation of bacteriophage host strains of Bacteroides species suitable for tracking sources of animal faecal pollution in water.

Gómez-Doñate M, Payán A, Cortés I, Blanch AR, Lucena F, Jofre J, Muniesa M.

Environ Microbiol. 2011 Jun;13(6):1622-31. doi: 10.1111/j.1462-2920.2011.02474.x. Epub 2011 Mar 28.


Supplemental Content

Support Center