Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 208

1.

Highly flexible, proton-conductive silicate glass electrolytes for medium-temperature/low-humidity proton exchange membrane fuel cells.

Lee HJ, Kim JH, Won JH, Lim JM, Hong YT, Lee SY.

ACS Appl Mater Interfaces. 2013 Jun 12;5(11):5034-43. doi: 10.1021/am400836h. Epub 2013 May 22.

PMID:
23672268
2.

Hydrophilicity/porous structure-tuned, SiO2/polyetherimide-coated polyimide nonwoven porous substrates for reinforced composite proton exchange membranes.

Lee JR, Won JH, Kim NY, Lee MS, Lee SY.

J Colloid Interface Sci. 2011 Oct 15;362(2):607-14. doi: 10.1016/j.jcis.2011.06.076. Epub 2011 Jul 7.

PMID:
21788024
3.

Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.

Miyatake K, Chikashige Y, Higuchi E, Watanabe M.

J Am Chem Soc. 2007 Apr 4;129(13):3879-87. Epub 2007 Mar 13.

PMID:
17352469
4.

Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications.

Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M.

J Am Chem Soc. 2006 Feb 8;128(5):1762-9.

PMID:
16448153
5.

Considerations of the Effects of Naphthalene Moieties on the Design of Proton-Conductive Poly(arylene ether ketone) Membranes for Direct Methanol Fuel Cells.

Wang B, Hong L, Li Y, Zhao L, Wei Y, Zhao C, Na H.

ACS Appl Mater Interfaces. 2016 Sep 14;8(36):24079-88. doi: 10.1021/acsami.6b06983. Epub 2016 Sep 2.

PMID:
27557058
6.

Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane.

Hara N, Ohashi H, Ito T, Yamaguchi T.

J Phys Chem B. 2009 Apr 9;113(14):4656-63. doi: 10.1021/jp810575u.

PMID:
19290602
7.

Poly(arylene ether)s containing superacid groups as proton exchange membranes.

Mikami T, Miyatake K, Watanabe M.

ACS Appl Mater Interfaces. 2010 Jun;2(6):1714-21. doi: 10.1021/am100224z.

PMID:
20491452
8.

Sulfonated poly(arylene ether sulfone ketone) multiblock copolymers with highly sulfonated block. Fuel cell performance.

Bae B, Yoda T, Miyatake K, Uchida M, Uchida H, Watanabe M.

J Phys Chem B. 2010 Aug 19;114(32):10481-7. doi: 10.1021/jp1052908.

PMID:
20701380
9.

Acid-functionalized polysilsesquioxane-nafion composite membranes with high proton conductivity and enhanced selectivity.

Xu K, Chanthad C, Gadinski MR, Hickner MA, Wang Q.

ACS Appl Mater Interfaces. 2009 Nov;1(11):2573-9. doi: 10.1021/am900498u.

PMID:
20356129
10.

Novel highly proton conductive sulfonated poly(p-phenylene) from 2,5-dichloro-4-(phenoxypropyl)benzophenone as proton exchange membranes for fuel cell applications.

Seesukphronrarak S, Ohira A.

Chem Commun (Camb). 2009 Aug 21;(31):4744-6. doi: 10.1039/b908140b. Epub 2009 Jul 1.

PMID:
19641829
11.

Graft-crosslinked copolymers based on poly(arylene ether ketone)-gc-sulfonated poly(arylene ether sulfone) for PEMFC applications.

Zhang X, Hu Z, Luo L, Chen S, Liu J, Chen S, Wang L.

Macromol Rapid Commun. 2011 Jul 15;32(14):1108-13. doi: 10.1002/marc.201100116. Epub 2011 Jun 13.

PMID:
21671443
12.

Synthesis and Properties of Poly(ether sulfone)s with Clustered Sulfonic Groups for PEMFC Applications under Various Relative Humidity.

Lee SW, Chen JC, Wu JA, Chen KH.

ACS Appl Mater Interfaces. 2017 Mar 22;9(11):9805-9814. doi: 10.1021/acsami.7b00919. Epub 2017 Mar 8.

PMID:
28240849
13.

Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells.

Xu F, Mu S.

J Nanosci Nanotechnol. 2014 Feb;14(2):1169-80. Review.

PMID:
24749420
14.

Highly Proton Conductive Poly(vinyl acetate)/NafionĀ® Composite Membrane for Proton Exchange Membrane Fuel Cell Application.

Kabir MDL, Kim HJ, Lee CJ, Choi SJ.

J Nanosci Nanotechnol. 2018 Sep 1;18(9):6536-6540. doi: 10.1166/jnn.2018.15668.

PMID:
29677829
15.

Synthesis and Membrane Properties of Sulfonated Poly(arylene ether sulfone) Statistical Copolymers for Electrolysis of Water: Influence of Meta- and Para-Substituted Comonomers.

Daryaei A, Miller GC, Willey J, Roy Choudhury S, Vondrasek B, Kazerooni D, Burtner MR, Mittelsteadt C, Lesko JJ, Riffle JS, McGrath JE.

ACS Appl Mater Interfaces. 2017 Jun 14;9(23):20067-20075. doi: 10.1021/acsami.7b02401. Epub 2017 Jun 1.

PMID:
28530822
16.

Synthesis and properties of sulfonated block copolymers having fluorenyl groups for fuel-cell applications.

Bae B, Miyatake K, Watanabe M.

ACS Appl Mater Interfaces. 2009 Jun;1(6):1279-86. doi: 10.1021/am900165w.

PMID:
20355924
17.

Designing advanced alkaline polymer electrolytes for fuel cell applications.

Pan J, Chen C, Zhuang L, Lu J.

Acc Chem Res. 2012 Mar 20;45(3):473-81. doi: 10.1021/ar200201x. Epub 2011 Nov 10.

PMID:
22075175
18.

Synthesis and characterization of sulfonated poly(ether sulfone)s containing mesonaphthobifluorene for polymer electrolyte membrane fuel cell.

Lim Y, Seo D, Lee S, Hossain MA, Lim J, Lee S, Hong T, Kim W.

J Nanosci Nanotechnol. 2014 Oct;14(10):7948-53.

PMID:
25942900
19.

Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers.

Kim YS, Pivovar BS.

Annu Rev Chem Biomol Eng. 2010;1:123-48. doi: 10.1146/annurev-chembioeng-073009-101309. Review.

PMID:
22432576
20.

Facilitating Proton Transport in Nafion-Based Membranes at Low Humidity by Incorporating Multifunctional Graphene Oxide Nanosheets.

He X, He G, Zhao A, Wang F, Mao X, Yin Y, Cao L, Zhang B, Wu H, Jiang Z.

ACS Appl Mater Interfaces. 2017 Aug 23;9(33):27676-27687. doi: 10.1021/acsami.7b06424. Epub 2017 Aug 10.

PMID:
28766334

Supplemental Content

Support Center